137 research outputs found
Gastrointestinal motility during sleep assessed by tracking of telemetric capsules combined with polysomnography - a pilot study.
Studies of gastrointestinal function during sleep are hampered by lack of applicable techniques. Recent development of a novel ambulatory telemetric capsule system, which can be used in conjunction with polysomnography, offers a solution to this problem. The 3D-Transit system consists of ingestible electromagnetic capsules traceable through a portable extracorporeal receiver while traversing the gut. During sleep monitored by polysomnography, gastrointestinal motility was concurrently investigated using 3D-Transit in nine healthy subjects. Overall, the amplitude of gastric contractions decreased with depth of sleep (light sleep, N2 versus deep sleep, N3; P<0.05). Progression through the small intestine did not change with depth of sleep (Kruskal-Wallis probability =0.1), and there was no association between nocturnal awakenings or arousals and the occurrence of colonic or small intestinal propagating movements. Basal colonic activity was suppressed during both deep sleep (P<0.05) and light sleep (P<0.05) when compared with nocturnal wake periods. In conclusion, the novel ambulatory 3D-Transit system combined with polysomnography allows minimally invasive and completely ambulatory investigation of associations between sleep patterns and gastrointestinal motility
Validation of the optical Aktiia bracelet in different body positions for the persistent monitoring of blood pressure.
The diagnosis of hypertension and the adjustment of antihypertensive drugs are evolving from isolated measurements performed at the physician offices to the full phenotyping of patients in real-life conditions. Indeed, the strongest predictor of cardiovascular risk comes from night measurements. The aim of this study was to demonstrate that a wearable device (the Aktiia Bracelet) can accurately estimate BP in the most common body positions of daily life and thus become a candidate solution for the BP phenotyping of patients. We recruited 91 patients with BP ranging from low to hypertensive levels and compared BP values from the Aktiia Bracelet against auscultatory reference values for 4 weeks according to an extended ISO 81060-2 protocol. After initializing on day one, the observed means and standard deviations of differences for systolic BP were of 0.46 ± 7.75 mmHg in the sitting position, - 2.44 ± 10.15 mmHg in the lying, - 3.02 ± 6.10 mmHg in the sitting with the device on the lap, and - 0.62 ± 12.51 mmHg in the standing position. Differences for diastolic BP readings were respectively of 0.39 ± 6.86 mmHg, - 1.93 ± 7.65 mmHg, - 4.22 ± 6.56 mmHg and - 4.85 ± 9.11 mmHg. This study demonstrates that a wearable device can accurately estimate BP in the most common body positions compared to auscultation, although precision varies across positions. While wearable persistent BP monitors have the potential to facilitate the identification of individual BP phenotypes at scale, their prognostic value for cardiovascular events and its association with target organ damage will need cross-sectional and longitudinal studies. Deploying this technology at a community level may be also useful to drive public health interventions against the epidemy of hypertension
Validation of the optical Aktiia bracelet in different body positions for the persistent monitoring of blood pressure.
The diagnosis of hypertension and the adjustment of antihypertensive drugs are evolving from isolated measurements performed at the physician offices to the full phenotyping of patients in real-life conditions. Indeed, the strongest predictor of cardiovascular risk comes from night measurements. The aim of this study was to demonstrate that a wearable device (the Aktiia Bracelet) can accurately estimate BP in the most common body positions of daily life and thus become a candidate solution for the BP phenotyping of patients. We recruited 91 patients with BP ranging from low to hypertensive levels and compared BP values from the Aktiia Bracelet against auscultatory reference values for 4 weeks according to an extended ISO 81060-2 protocol. After initializing on day one, the observed means and standard deviations of differences for systolic BP were of 0.46 ± 7.75 mmHg in the sitting position, - 2.44 ± 10.15 mmHg in the lying, - 3.02 ± 6.10 mmHg in the sitting with the device on the lap, and - 0.62 ± 12.51 mmHg in the standing position. Differences for diastolic BP readings were respectively of 0.39 ± 6.86 mmHg, - 1.93 ± 7.65 mmHg, - 4.22 ± 6.56 mmHg and - 4.85 ± 9.11 mmHg. This study demonstrates that a wearable device can accurately estimate BP in the most common body positions compared to auscultation, although precision varies across positions. While wearable persistent BP monitors have the potential to facilitate the identification of individual BP phenotypes at scale, their prognostic value for cardiovascular events and its association with target organ damage will need cross-sectional and longitudinal studies. Deploying this technology at a community level may be also useful to drive public health interventions against the epidemy of hypertension
Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 solâgel layers
The aim of this study was to demonstrate the
relationship between the structural and corrosion properties
of an ISO 5832-9 biomedical alloy modified with titanium
dioxide (TiO2) layers. These layers were obtained via the
solâgel method by acid-catalyzed hydrolysis of titanium
isopropoxide in isopropanol solution. To obtain TiO2 layers
with different structural properties, the coated samples
were annealed at temperatures of 200, 300, 400, 450, 500,
600 and 800 C for 2 h. For all the prepared samples,
accelerated corrosion measurements were performed in
Tyrodeâs physiological solution using electrochemical
methods. The most important corrosion parameters were
determined: corrosion potential, polarization resistance,
corrosion rate, breakdown and repassivation potentials.
Corrosion damage was analyzed using scanning electron
microscopy. Structural analysis was carried out for selected
TiO2 coatings annealed at 200, 400, 600 and 800 C. In
addition, the morphology, chemical composition, crystallinity,
thickness and density of the deposited TiO2 layers
were determined using suitable electron and X-ray measurement
methods. It was shown that the structure and
character of interactions between substrate and deposited
TiO2 layers depended on annealing temperature. All the
obtained TiO2 coatings exhibit anticorrosion properties, but
these properties are related to the crystalline structure and
character of substrateâlayer interaction. From the point of
view of corrosion, the best TiO2 solâgel coatings for stainless steel intended for biomedical applications seem to
be those obtained at 400 C.This study was supported by Grant No. N N507
501339 of the National Science Centre. The authors wish to express
their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy
COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases
Although most autoimmune diseases are considered to be CD4 T cell- or antibody-mediated, many respond to CD20-depleting antibodies that have limited influence on CD4 and plasma cells. This includes rituximab, oblinutuzumab and ofatumumab that are used in cancer, rheumatoid arthritis and off-label in a large number of other autoimmunities and ocrelizumab in multiple sclerosis. Recently, the COVID-19 pandemic created concerns about immunosuppression in autoimmunity, leading to cessation or a delay in immunotherapy treatments. However, based on the known and emerging biology of autoimmunity and COVID-19, it was hypothesised that while B cell depletion should not necessarily expose people to severe SARS-CoV-2-related issues, it may inhibit protective immunity following infection and vaccination. As such, drug-induced B cell subset inhibition, that controls at least some autoimmunities, would not influence innate and CD8 T cell responses, which are central to SARS-CoV-2 elimination, nor the hypercoagulation and innate inflammation causing severe morbidity. This is supported clinically, as the majority of SARS-CoV-2-infected, CD20-depleted people with autoimmunity have recovered. However, protective neutralizing antibody and vaccination responses are predicted to be blunted until naive B cells repopulate, based on B cell repopulation kinetics and vaccination responses, from published rituximab and unpublished ocrelizumab (NCT00676715, NCT02545868) trial data, shown here. This suggests that it may be possible to undertake dose interruption to maintain inflammatory disease control, while allowing effective vaccination against SARS-CoV-29, if and when an effective vaccine is available
Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past âŒ45,000 years
Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions.
Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ~45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures
of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ENd values <214.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ~15 and ~5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate
variability
Comparative Therapeutic Effects of Velaglucerase Alfa and Imiglucerase in a Gaucher Disease Mouse Model
Gaucher disease type 1 is caused by the defective activity of the lysosomal enzyme, acid ÎČ-glucosidase (GCase). Regular infusions of purified recombinant GCase are the standard of care for reversing hematologic, hepatic, splenic, and bony manifestations. Here, similar in vitro enzymatic properties, and in vivo pharmacokinetics and pharmacodynamics (PK/PD) and therapeutic efficacy of GCase were found with two human GCases, recombinant GCase (CHO cell, imiglucerase, Imig) and gene-activated GCase (human fibrosarcoma cells, velaglucerase alfa, Vela), in a Gaucher mouse, D409V/null. About 80+% of either enzyme localized to the liver interstitial cells and <5% was recovered in spleens and lungs after bolus i.v. injections. Glucosylceramide (GC) levels and storage cell numbers were reduced in a dose (5, 15 or 60 U/kg/wk) dependent manner in livers (60â95%) and in spleens (âŒ10â30%). Compared to Vela, Imig (60 U/kg/wk) had lesser effects at reducing hepatic GC (pâ=â0.0199) by 4 wks; this difference disappeared by 8 wks when nearly WT levels were achieved by Imig. Anti-GCase IgG was detected in GCase treated mice at 60 U/kg/wk, and IgE mediated acute hypersensitivity and death occurred after several injections of 60 U/kg/wk (21% with Vela and 34% with Imig). The responses of GC levels and storage cell numbers in Vela- and Imig-treated Gaucher mice at various doses provide a backdrop for clinical applications and decisions
Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)
International audienceWe introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells
- âŠ