221 research outputs found

    Robust Line Detection in Historical Church Registers

    Get PDF
    For being able to automatically acquire information recorded in church registers and other historical scriptures, the text of such documents needs to be segmented prior to automatic reading. Segmentation of old handwritten scriptures is difficult for two main reasons

    Léiomyosarcome pleural primitif: à propos d’un cas

    Get PDF
    Nous rapportons le cas d'un léiomyosarcome pleural primitif, localement avancé, chez un homme de 64 ans, traité par chimiothérapie. La circonstance de découverte est une masse intra-thoracique, augmentant progressivement de volume, dans un contexte de fièvre et d'altération de l'état général. La tomodensitométrie abdominale a objectivé la tumeur. L'exploration chirurgicale a révélé une tumeur pleurale, très localement avancée, envahissant le médiastin. Une simple biopsie a été réalisée. L'examen anatomopathologique avec complément immunohistochimique était en faveur d'un léiomyosarcome de haut grade. Notre patient a reçu une chimiothérapie à base de Doxorubicine à la dose de 60 mg / m², administrée tous les 21 jours. L'évaluation après 6 cycles de chimiothérapie a retrouvé un bénéfice clinique et une réponse partielle radiologique estimée à 30%. Actuellement, il est en bon contrôle.Key words: Léiomyosarcome, plèvre, chimiothérapi

    Control of cellular automata

    Full text link
    We study the problem of master-slave synchronization and control of totalistic cellular automata (CA) by putting a fraction of sites of the slave equal to those of the master and finding the distance between both as a function of this fraction. We present three control strategies that exploit local information about the CA, mainly, the number of nonzero Boolean derivatives. When no local information is used, we speak of synchronization. We find the critical properties of control and discuss the best control strategy compared with synchronization

    Towards a Systems Approach in the Genetic Analysis of Archaea: Accelerating Mutant Construction and Phenotypic Analysis in Haloferax volcanii

    Get PDF
    With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment

    Emerging properties of financial time series in the “Game of Life”

    Get PDF
    We explore the spatial complexity of Conway’s “Game of Life,” a prototypical cellular automaton by means of a geometrical procedure generating a two-dimensional random walk from a bidimensional lattice with periodical boundaries. The one-dimensional projection of this process is analyzed and it turns out that some of its statistical properties resemble the so-called stylized facts observed in financial time series. The scope and meaning of this result are discussed from the viewpoint of complex systems. In particular, we stress how the supposed peculiarities of financial time series are, often, overrated in their importance

    High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    Get PDF
    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed

    Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice

    Get PDF
    © 2009 Nature Publishing Group All rights reservedPrevious in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation(LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A2A receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A2A receptor antagonist, SCH58261, upon a well-known associative learning paradigm - classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus(US). A single electrical pulse was presented to the Schaffer collateral–commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS–US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.)-injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261- injected mice. In conclusion, the endogenous activation of adenosine A2A receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.This study was supported by grants from the Spanish Ministry of Education and Research (BFU2005-01024 and BFU2005-02512), Spanish Junta de Andalucía (BIO-122 and CVI-02487), and the Fundación Conocimiento y Cultura of the Pablo de Olavide University (Seville, Spain).B. Fontinha was in receipt of a studentship from a project grant (POCI/SAU-NEU/56332/2004) supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), and of an STSM from Cost B30 concerted action of the EU

    High-throughput Comparison, Functional Annotation, and Metabolic Modeling of Plant Genomes using the PlantSEED Resource

    Full text link
    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes

    Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    Get PDF
    Chagas disease is one of the most important parasitic diseases in Latin America. Since the 1980's, many national and international initiatives have contributed to eliminate vectors developing inside human domiciles. Today's challenge is to control vectors that are non-adapted to the human domicile, but still able to transmit the parasite through regular short stay in the houses. Here, we assess the potential of different control strategies applied in specific spatial patterns using a mathematical model that reproduces the dynamic of dispersion of such ‘non-domiciliated’ vectors within a village of the Yucatan Peninsula, Mexico. We show that no single strategy applied in the periphery of the village, where the insects are more abundant, provides satisfying protection to the whole village. However, combining the use of insect screens in houses at the periphery of the village (to simultaneously fight insects dispersing from the garden and the forest), and the cleaning of the peri-domicile areas of the centre of the village (where sylvatic insects are absent), would provide a cost-effective control. This type of spatially mixed strategy offers a promising way to reduce the cost associated with the repeated interventions required to control non-domiciliated vectors that permanently attempt to infest houses
    corecore