2,072 research outputs found
Conditional Hardness of Earth Mover Distance
The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension.
In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results:
- Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time.
- Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions.
- Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions
The not so 'borderless' internet:Does it still give rise to private international law issues?
ULearn: personalized medical learning on the web for patient empowerment
Health literacy constitutes an important step towards patient empowerment and the Web is presently the biggest repository of medical information and, thus, the biggest medical resource to be used in the learning process. However, at present, web medical information is mainly accessed through generic search engines that do not take into account the user specific needs and starting knowledge and so they are not able to support learning activities tailored to the specific user requirements. This work presents “ULearn” a meta engine that supports access, understanding and learning on the Web in the medical domain based on specific user requirements and knowledge levels towards what we call “balanced learning”. Balanced learning allows users to perform learning activities based on specific user requirements (understanding, deepening, widening and exploring) towards his/her empowerment. We have designed and developed ULearn to suggest search keywords correlated to the different user requirements and we have carried out some preliminary experiments to evaluate the effectiveness of the provided information
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
Screening of the quantum-confined Stark effect in AlN/GaN nanowire superlattices by Germanium doping
We report on electrostatic screening of polarization-induced internal
electric fields in AlN/GaN nanowire heterostructures with Germanium-doped GaN
nanodiscs embedded between AlN barriers. The incorporation of Germanium at
concentrations above shifts the photoluminescence
emission energy of GaN nanodiscs to higher energies accompanied by a decrease
of the photoluminescence decay time. At the same time, the thickness-dependent
shift in emission energy is significantly reduced. In spite of the high donor
concentration a degradation of the photoluminescence properties is not
observed.Comment: Manuscript including Supplemental material (15 pages, 5 figures
Immune responses to gp82 provide protection against mucosal Trypanosoma cruzi infection
The potential use of the Trypanosoma cruzi metacyclic trypomastigote (MT) stage-specific molecule glycoprotein-82 (gp82) as a vaccine target has not been fully explored. We show that the opsonization of T. cruzi MT with gp82-specific antibody prior to mucosal challenge significantly reduces parasite infectivity. In addition, we investigated the immune responses as well as the systemic and mucosal protective immunity induced by intranasal CpG-adjuvanted gp82 vaccination. Spleen cells from mice immunized with CpG-gp82 proliferated and secreted IFN-γ in a dose-dependent manner in response to in vitro stimulation with gp82 and parasite lysate. More importantly, these CpG-gp82-immunized mice were significantly protected from a biologically relevant oral parasite challenge.Saint Louis University Department of Molecular MicrobiologyUniversidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de Microbiologia, Imunologia e ParasitologiaUNIFESP, EPM, Depto. de Microbiologia, Imunologia e ParasitologiaSciEL
Track loading limits and cross-acceptance of vehicle approvals
The requirements for track loading limits are one of the main barriers to simple cross-acceptance of vehicles where rolling stock that is already operating successfully in one (or more) networks has to be retested before it can be approved for operation on another network. DynoTRAIN Work Package 4 studied this area in order to determine whether the additional requirements were justified, or if the process could be made much cheaper and simpler without increasing the risk of track deterioration for the networks. The review of national requirements identified modified criteria and limit values for track forces in some member states; however, these can be obtained from additional analysis of the normal test results with no new tests required. The influence of design rail inclination has also been found not to be significant, provided a realistic range of wheel–rail contact conditions are included in the tests. For line speeds greater than or equal to 160 km/h, the current standards for track construction across the member states appear to be similar. On lower speed lines in some countries, a ‘weaker’ track condition may require a lower limit on one of the vehicle assessment parameters. Track dynamics modelling has shown that the vehicle assessment parameters used in international standards are suitable for use in cross-acceptance for track forces. The use of multiple regression analysis allows the estimated maximum value for relevant parameters to be evaluated for different target conditions and then compared with the appropriate limit value, or with values for existing, comparable vehicles. Guidance has also been provided on the relevant parameters to consider when developing operating controls for different types of track deterioration
Absence of calcium‐independent phospholipase A2β impairs platelet‐activating factor production and inflammatory cell recruitment in Trypanosoma cruzi‐infected endothelial cells
Both acute and chronic phases of Trypanosoma cruzi (T. cruzi) infection are characterized by tissue inflammation, mainly in the heart. A key step in the inflammatory process is the transmigration of inflammatory cells across the endothelium to underlying infected tissues. We observed increased arachidonic acid release and platelet‐activating factor (PAF) production in human coronary artery endothelial cells (HCAEC) at up to 96 h of T. cruzi infection. Arachidonic acid release is mediated by activation of the calcium‐independent phospholipase A(2) (iPLA(2)) isoforms iPLA(2)β and iPLA(2)γ, whereas PAF production was dependent upon iPLA(2)β activation alone. Trypanosoma cruzi infection also resulted in increased cell surface expression of adhesion molecules. Increased adherence of inflammatory cells to T. cruzi‐infected endothelium was blocked by inhibition of endothelial cell iPLA(2)β or by blocking the PAF receptor on inflammatory cells. This suggests that PAF, in combination with adhesion molecules, might contribute to parasite clearing in the heart by recruiting inflammatory cells to the endothelium
The absence of myocardial calcium-independent phospholipase a2γ results in impaired prostaglandin e2 production and decreased survival in mice with acute trypanosoma cruzi infection
Cardiomyopathy is a serious complication of Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi. The parasite often infects cardiac myocytes, causing the release of inflammatory mediators, including eicosanoids. A recent study from our laboratory demonstrated that calcium-independent phospholipase A(2)γ (iPLA(2)γ) accounts for the majority of PLA(2) activity in rabbit ventricular myocytes and is responsible for arachidonic acid (AA) and prostaglandin E(2) (PGE(2)) release. Thus, we hypothesized that cardiac iPLA(2)γ contributes to eicosanoid production in T. cruzi infection. Inhibition of the isoform iPLA(2)γ or iPLA(2)β, with the R or S enantiomer of bromoenol lactone (BEL), respectively, demonstrated that iPLA(2)γ is the predominant isoform in immortalized mouse cardiac myocytes (HL-1 cells). Stimulation of HL-1 cells with thrombin, a serine protease associated with microthrombus formation in Chagas' disease and a known activator of iPLA(2), increased AA and PGE(2) release, accompanied by platelet-activating factor (PAF) production. Similarly, T. cruzi infection resulted in increased AA and PGE(2) release over time that was inhibited by pretreatment with (R)-BEL. Further, T. cruzi-infected iPLA(2)γ-knockout (KO) mice had lower survival rates and increased tissue parasitism compared to wild-type (WT) mice, suggesting that iPLA(2)γ-KO mice were more susceptible to infection than WT mice. A significant increase in iPLA(2) activity was observed in WT mice following infection, whereas iPLA(2)γ-KO mice showed no alteration in cardiac iPLA(2) activity and produced less PGE(2). In summary, these studies demonstrate that T. cruzi infection activates cardiac myocyte iPLA(2)γ, resulting in increased AA and PGE(2) release, mediators that may be essential for host survival during acute infection. Thus, these studies suggest that iPLA(2)γ plays a cardioprotective role during the acute stage of Chagas' disease
Self-assembly of ordered wurtzite/rock salt heterostructures—A new view on phase separation in MgxZn1−xO
The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg x Zn 1−xO heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg x Zn 1−xO layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, we suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al2O4 spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg x Zn 1−xO. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth
- …
