15,542,844 research outputs found

    On the value set of small families of polynomials over a finite field, II

    Get PDF
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},...,a_{d-s} are fixed. Our estimate asserts that \mathcal{V}(d,s,\bfs{a})=\mu_d\,q+\mathcal{O}(q^{1/2}), where \mathcal{V}(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},...,a_{d-s}). We also prove that \mathcal{V}_2(d,s,\bfs{a})=\mu_d^2\,q^2+\mathcal{O}(q^{3/2}), where that \mathcal{V}_2(d,s,\bfs{a}) is the average second moment on any family of monic polynomials of Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that \mathcal{V}_2(d,0)=\mu_d^2\,q^2+\mathcal{O}(q), where \mathcal{V}_2(d,0) denotes the average second moment of all monic polynomials in Fq[T] of degree d with f(0)=0. All our estimates hold for fields of characteristic p>2 and provide explicit upper bounds for the constants underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the questions to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. A critical point for our results is an analysis of the singular locus of the varieties under consideration, which allows to obtain rather precise estimates on the corresponding number of Fq--rational points.Comment: 36 page

    Lattice point problems and distribution of values of quadratic forms

    Full text link
    For d-dimensional irrational ellipsoids E with d >= 9 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order o(r^{d-2}). The estimate refines an earlier authors' bound of order O(r^{d-2}) which holds for arbitrary ellipsoids, and is optimal for rational ellipsoids. As an application we prove a conjecture of Davenport and Lewis that the gaps between successive values, say s<n(s), s,n(s) in Q[Z^d], of a positive definite irrational quadratic form Q[x], x in R^d, are shrinking, i.e., that n(s) - s -> 0 as s -> \infty, for d >= 9. For comparison note that sup_s (n(s)-s) 0, for rational Q[x] and d>= 5. As a corollary we derive Oppenheim's conjecture for indefinite irrational quadratic forms, i.e., the set Q[Z^d] is dense in R, for d >= 9, which was proved for d >= 3 by G. Margulis in 1986 using other methods. Finally, we provide explicit bounds for errors in terms of certain characteristics of trigonometric sums.Comment: 51 pages, published versio

    Explicit measurements with almost optimal thresholds for compressed sensing

    Get PDF
    We consider the deterministic construction of a measurement matrix and a recovery method for signals that are block sparse. A signal that has dimension N = nd, which consists of n blocks of size d, is called (s, d)-block sparse if only s blocks out of n are nonzero. We construct an explicit linear mapping Φ that maps the (s, d)-block sparse signal to a measurement vector of dimension M, where s•d <N(1-(1-M/N)^(d/(d+1))-o(1). We show that if the (s, d)- block sparse signal is chosen uniformly at random then the signal can almost surely be reconstructed from the measurement vector in O(N^3) computations

    Induced Gauge Structure of Quantum Mechanics on SDS^D

    Full text link
    The Ohnuki-Kitakado (O-K) scheme of quantum mechanics on SDS^D embedded in RD+1R^{D+1} is investigated. Generators satisfying the O-K algebra are written down explicitly in term of the induced gauge potential. A direct method is developed to obtain the generators in covariant form. It is seen that there exists an induced gauge configuration which is trivial on SDS^D but might cause a nontrivial physical effect in RD+1R^{D+1}. The relation of the O-K scheme to extended objects such as the 't Hooft-Polyakov monopole is discussed.Comment: LaTex,15Page

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    Affine Invariant Covariance Estimation for Heavy-Tailed Distributions

    Get PDF
    In this work we provide an estimator for the covariance matrix of a heavy-tailed multivariate distributionWe prove that the proposed estimator S^\widehat{\mathbf{S}} admits an \textit{affine-invariant} bound of the form (1ε)SS^(1+ε)S(1-\varepsilon) \mathbf{S} \preccurlyeq \widehat{\mathbf{S}} \preccurlyeq (1+\varepsilon) \mathbf{S}in high probability, where S\mathbf{S} is the unknown covariance matrix, and \preccurlyeq is the positive semidefinite order on symmetric matrices. The result only requires the existence of fourth-order moments, and allows for ε=O(κ4dlog(d/δ)/n)\varepsilon = O(\sqrt{\kappa^4 d\log(d/\delta)/n}) where κ4\kappa^4 is a measure of kurtosis of the distribution, dd is the dimensionality of the space, nn is the sample size, and 1δ1-\delta is the desired confidence level. More generally, we can allow for regularization with level λ\lambda, then dd gets replaced with the degrees of freedom number. Denoting cond(S)\text{cond}(\mathbf{S}) the condition number of S\mathbf{S}, the computational cost of the novel estimator is O(d2n+d3log(cond(S)))O(d^2 n + d^3\log(\text{cond}(\mathbf{S}))), which is comparable to the cost of the sample covariance estimator in the statistically interesing regime ndn \ge d. We consider applications of our estimator to eigenvalue estimation with relative error, and to ridge regression with heavy-tailed random design

    Pion-kaon correlations in central Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kollegger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. &#379;o&#322;nierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubarev (STAR Collaboration
    corecore