15,542,844 research outputs found
On the value set of small families of polynomials over a finite field, II
We obtain an estimate on the average cardinality of the value set of any
family of monic polynomials of Fq[T] of degree d for which s consecutive
coefficients a_{d-1},...,a_{d-s} are fixed. Our estimate asserts that
\mathcal{V}(d,s,\bfs{a})=\mu_d\,q+\mathcal{O}(q^{1/2}), where
\mathcal{V}(d,s,\bfs{a}) is such an average cardinality,
\mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},...,a_{d-s}). We
also prove that \mathcal{V}_2(d,s,\bfs{a})=\mu_d^2\,q^2+\mathcal{O}(q^{3/2}),
where that \mathcal{V}_2(d,s,\bfs{a}) is the average second moment on any
family of monic polynomials of Fq[T] of degree d with s consecutive
coefficients fixed as above. Finally, we show that
\mathcal{V}_2(d,0)=\mu_d^2\,q^2+\mathcal{O}(q), where \mathcal{V}_2(d,0)
denotes the average second moment of all monic polynomials in Fq[T] of degree d
with f(0)=0. All our estimates hold for fields of characteristic p>2 and
provide explicit upper bounds for the constants underlying the
\mathcal{O}--notation in terms of d and s with "good" behavior. Our approach
reduces the questions to estimate the number of Fq--rational points with
pairwise--distinct coordinates of a certain family of complete intersections
defined over Fq. A critical point for our results is an analysis of the
singular locus of the varieties under consideration, which allows to obtain
rather precise estimates on the corresponding number of Fq--rational points.Comment: 36 page
Lattice point problems and distribution of values of quadratic forms
For d-dimensional irrational ellipsoids E with d >= 9 we show that the number
of lattice points in rE is approximated by the volume of rE, as r tends to
infinity, up to an error of order o(r^{d-2}). The estimate refines an earlier
authors' bound of order O(r^{d-2}) which holds for arbitrary ellipsoids, and is
optimal for rational ellipsoids. As an application we prove a conjecture of
Davenport and Lewis that the gaps between successive values, say s<n(s), s,n(s)
in Q[Z^d], of a positive definite irrational quadratic form Q[x], x in R^d, are
shrinking, i.e., that n(s) - s -> 0 as s -> \infty, for d >= 9. For comparison
note that sup_s (n(s)-s) 0, for rational Q[x] and
d>= 5. As a corollary we derive Oppenheim's conjecture for indefinite
irrational quadratic forms, i.e., the set Q[Z^d] is dense in R, for d >= 9,
which was proved for d >= 3 by G. Margulis in 1986 using other methods.
Finally, we provide explicit bounds for errors in terms of certain
characteristics of trigonometric sums.Comment: 51 pages, published versio
Explicit measurements with almost optimal thresholds for compressed sensing
We consider the deterministic construction of a measurement
matrix and a recovery method for signals that are block
sparse. A signal that has dimension N = nd, which consists
of n blocks of size d, is called (s, d)-block sparse if
only s blocks out of n are nonzero. We construct an explicit
linear mapping Φ that maps the (s, d)-block sparse signal
to a measurement vector of dimension M, where s•d <N(1-(1-M/N)^(d/(d+1))-o(1).
We show that if the (s, d)-
block sparse signal is chosen uniformly at random then the
signal can almost surely be reconstructed from the measurement
vector in O(N^3) computations
Induced Gauge Structure of Quantum Mechanics on
The Ohnuki-Kitakado (O-K) scheme of quantum mechanics on embedded in
is investigated. Generators satisfying the O-K algebra are written
down explicitly in term of the induced gauge potential. A direct method is
developed to obtain the generators in covariant form. It is seen that there
exists an induced gauge configuration which is trivial on but might cause
a nontrivial physical effect in . The relation of the O-K scheme to
extended objects such as the 't Hooft-Polyakov monopole is discussed.Comment: LaTex,15Page
Fault-tolerant additive weighted geometric spanners
Let S be a set of n points and let w be a function that assigns non-negative
weights to points in S. The additive weighted distance d_w(p, q) between two
points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it
is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance
between p and q. A graph G(S, E) is called a t-spanner for the additive
weighted set S of points if for any two points p and q in S the distance
between p and q in graph G is at most t.d_w(p, q) for a real number t > 1.
Here, d_w(p,q) is the additive weighted distance between p and q. For some
integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant
additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S'
\subset S with cardinality at most k, the graph G \ S' is a t-spanner for the
points in S \ S'. For any given real number \epsilon > 0, we obtain the
following results:
- When the points in S belong to Euclidean space R^d, an algorithm to compute
a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w).
Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between
p and q in R^d.
- When the points in S belong to a simple polygon P, for the metric space (S,
d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with
O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a
geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here,
for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along
the shortest path between p and q in P.
- When the points in lie on a terrain T, an algorithm to compute a
geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n})
edges.Comment: a few update
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
In this work we provide an estimator for the covariance matrix of a
heavy-tailed multivariate distributionWe prove that the proposed estimator
admits an \textit{affine-invariant} bound of the form
in high probability, where is the
unknown covariance matrix, and is the positive semidefinite
order on symmetric matrices. The result only requires the existence of
fourth-order moments, and allows for where is a measure of kurtosis of the
distribution, is the dimensionality of the space, is the sample size,
and is the desired confidence level. More generally, we can allow
for regularization with level , then gets replaced with the
degrees of freedom number. Denoting the condition
number of , the computational cost of the novel estimator is , which is comparable to the cost of the
sample covariance estimator in the statistically interesing regime .
We consider applications of our estimator to eigenvalue estimation with
relative error, and to ridge regression with heavy-tailed random design
Pion-kaon correlations in central Au+Au collisions at sqrt[sNN]=130 GeV
Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[sNN]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.alle Autoren: J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, X. Z. Cai, H. Caines, M. Calderón de la Barca Sánchez, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, H. F. Chen, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, D. Das, S. Das, A. A. Derevschikov, L. Didenko, T. Dietel, X. Dong, J. E. Draper, F. Du, A. K. Dubey, V. B. Dunin, J. C. Dunlop, M. R. Dutta Majumdar, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, J. Faivre, R. Fatemi, K. Filimonov, P. Filip, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, M. S. Ganti, T. D. Gutierrez, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, P. Ghosh, J. E. Gonzalez, O. Grachov, V. Grigoriev, S. Gronstal, D. Grosnick, M. Guedon, S. M. Guertin, A. Gupta, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, M. Heinz, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, S. L. Huang, T. J. Humanic, G. Igo, A. Ishihara, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, S. Kabana, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, D. D. Koetke, T. Kollegger, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, A. Kumar, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, J. Lauret, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, C. Li, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, Y. G. Ma, D. Magestro, S. Mahajan, L. K. Mangotra, D. P. Mahapatra, R. Majka, R. Manweiler, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, C. Mironov, D. Mishra, J. Mitchell, B. Mohanty, L. Molnar, C. F. Moore, M. J. Mora-Corral, V. Morozov, M. M. de Moura, M. G. Munhoz, B. K. Nandi, S. K. Nayak, T. K. Nayak, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, S. K. Pal, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A. Petrov, S. C. Phatak, R. Picha, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, M. Potekhin, E. Potrebenikova, B. V. K. S. Potukuchi, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, R. Raniwala, S. Raniwala, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, G. Renault, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, L. J. Ruan, V. Rykov, R. Sahoo, I. Sakrejda, S. Salur, J. Sandweiss, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, M. Shao, M. Sharma, K. E. Shestermanov, S. S. Shimanskii, R. N. Singaraju, F. Simon, G. Skoro, N. Smirnov, R. Snellings, G. Sood, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, S. Stanislaus, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, D. Thein, J. H. Thomas, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, M. D. Trivedi, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, A. N. Vasiliev, M. Vasiliev, S. E. Vigdor, Y. P. Viyogi, S. A. Voloshin, W. Waggoner, F. Wang, G. Wang, X. L. Wang, Z. M. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, J. Wu, N. Xu, Z. Xu, Z. Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, H. Y. Zhang, W. M. Zhang, Z. P. Zhang, P. A. Żołnierczuk, R. Zoulkarneev, J. Zoulkarneeva, and A. N. Zubarev (STAR Collaboration
- …
