'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
We consider the deterministic construction of a measurement
matrix and a recovery method for signals that are block
sparse. A signal that has dimension N = nd, which consists
of n blocks of size d, is called (s, d)-block sparse if
only s blocks out of n are nonzero. We construct an explicit
linear mapping Φ that maps the (s, d)-block sparse signal
to a measurement vector of dimension M, where s•d <N(1-(1-M/N)^(d/(d+1))-o(1).
We show that if the (s, d)-
block sparse signal is chosen uniformly at random then the
signal can almost surely be reconstructed from the measurement
vector in O(N^3) computations