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1. Introduction. Let Fq be the finite field of q elements, let T be an
indeterminate over Fq and let f ∈ Fq[T ]. We define V(f) := |{f(c) : c ∈ Fq}|,
the cardinality of the value set of f (cf. [LN83]). This paper is a continuation
of [C–P14] and is concerned with results on the average value set cardinality
of certain families of polynomials of Fq[T ].

Let V(d, 0) denote the average value of V(f) when f ranges over all monic
polynomials in Fq[T ] of degree d with f(0) = 0. It is well-known that

(1.1) V(d, 0) =
d∑
r=1

(−1)r−1
(
q

r

)
q1−r = µdq +O(1),

where µd :=
∑d

r=1 (−1)r−1/r! and the O-constant depends only on d (see
[U55a], [Coh73]).

On the other hand, if some of the coefficients of f are fixed, the results
on the average value of V(f) are less precise. More precisely, let 1 ≤ s ≤ d−2
and a := (ad−1, . . . , ad−s) ∈ Fsq . For every b := (bd−s−1, . . . , b1), let

fab := T d +

s∑
i=1

ad−iT
d−i +

d−1∑
i=s+1

bd−iT
d−i.

Then for p := char(Fq) > d,

(1.2) V(d, s,a) :=
1

qd−s−1

∑
b∈Fd−s−1

q

V(fb) = µdq +O(q1/2),

where the O-constant depends only on d and s (see [U55b], [Coh72]). In our
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previous paper [C–P14], we obtain the following explicit estimate for q > d
and 1 ≤ s ≤ d/2− 1:

(1.3) |V(d, s,a)− µdq| ≤
e−1

2
+

(d− 2)5e2
√
d

2d−2
+

7

q
.

This result holds without any restriction on the characteristic p of Fq and
shows that V(d, s,a) = µdq + O(1). On the other hand, (1.3) is valid for
1 ≤ s ≤ d/2− 1, while (1.2) holds for a larger set of values of s, namely for
1 ≤ s ≤ d− 2.

In this paper we obtain an explicit estimate for V(d, s,a) which can be
seen as a complement of (1.3):

Theorem 1.1. Let p > 2, q > d and 1 ≤ s ≤ d− 3. Then

(1.4) |V(d, s,a)− µdq| ≤ d22d−1q1/2 + 133dd+5e2
√
d−d.

We observe that (1.4) holds for a larger set of values of s than (1.3),
although it does not hold for fields of characteristic 2. It might also be worth
remarking that the estimate for |V(fb)−µdq| in (1.4) does not behave as well
as that of (1.3). On the other hand, it strengthens (1.2) in that it provides an
explicit estimate for |V(fb)− µdq| for fields of characteristic greater than 2.

A second aim of this paper is to provide estimates on the second moment
of the value set cardinalities of the families of polynomials under consider-
ation. In this connection, in [U56] it is shown that, under the Riemann
hypothesis for L-functions, for p > d we have

(1.5) V2(d, 0) :=
1

qd−1

∑
V(f)2 = µ2dq

2 +O(q),

where the sum ranges over all monic polynomials f ∈ Fq[T ] of degree d with
f(0) = 0 (see also [KK90] for results when d ≥ q). We obtain the following
explicit version of (1.5), which also holds for fields Fq of small characteristic.

Theorem 1.2. Let p > 2 and q > d. If d ≥ 3, then

|V2(d, 0)− µ2dq2| ≤ (d222d−1 + 283d2d+8e4
√
d−2d)q.

Our second result regarding second moments is an estimate on the av-
erage second moment of the set of monic polynomials of degree d with s
coefficients fixed:

Theorem 1.3. Let p > 2, q > d and 1 ≤ s ≤ d − 3. Let V2(d, s,a) :=
q−d+s+1

∑
b∈Fd−s−1

q
V(fab )2. Then

|V2(d, s,a)− µ2dq2| ≤ d222d+1q3/2 + 283d2d+6e4
√
d−2dq.

Our approach to prove Theorem 1.1 shares certain similarities with that
of [C–P14]. Indeed, we express the quantity V(d, s,a) in terms of the number
χar of certain “interpolating sets” with d − s + 1 ≤ r ≤ d. More precisely,
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for fa := T d + ad−1T
d−1 + · · · + ad−sT

d−s, we define χar as the number of
r-element subsets of Fq at which fa can be interpolated by a polynomial of
degree at most d−s−1. In Section 3 we show that χar equals the number of
Fq-rational points with pairwise distinct coordinates of a given Fq-definable
affine variety Γ ∗r in Fqd−s+r for d− s+ 1 ≤ r ≤ d. In Section 4 we establish a
number of geometric properties of Γ ∗r . This allows us to obtain, in Section 5,
a suitable estimate on the quantities χar for d− s+ 1 ≤ r ≤ d, and thus on
V(d, s,a).

The proofs of Theorems 1.2 and 1.3 follow a similar scheme to that of
Theorem 1.1. We provide a detailed proof of Theorem 1.3 in Sections 6–9,
and sketch the proof of Theorem 1.2 in Section 10. In Section 6 we obtain a
combinatorial expression for V2(d, s,a) in terms of the number Sam,n of cer-
tain “interpolating sets” with d−s+1 ≤ m+n ≤ 2d. In Section 7 the number
Sam,n is expressed as the number of Fq-rational points with pairwise distinct

coordinates of a given Fq-definable affine variety Γ ∗m,n in Fqd−s+1+m+n for
each m,n as above. In Section 8 we obtain results concerning the geometry
of Γ ∗m,n which allow us to determine the asymptotic behavior of V2(d, s,a)
in Section 9. Finally, in Section 10 we discuss how the arguments of the
previous sections can be adapted in order to obtain a proof of Theorem 1.2.

We remark that the analysis of the singular locus of the varieties un-
derlying the proofs of Theorems 1.1 and 1.3 requires the study of the dis-
criminant locus of the family of polynomials under consideration, that is,
the union of the zero loci of the discriminants of all these polynomials. Such
a discriminant locus has been considered in [FS84], where it is shown that
it is absolutely irreducible for fields of characteristic large enough. In an
appendix we show that the discriminant locus is absolutely irreducible for
fields of characteristic at least 3, extending the main result of [FS84].

2. Notions and notations. Since our approach relies on tools of al-
gebraic geometry, we briefly collect the basic definitions and facts that we
need. We use standard notions and notations which can be found in, e.g.,
[Kun85], [Sha94].

We denote by An the n-dimensional affine space Fqn and by Pn the
n-dimensional projective space over Fqn+1. Both spaces are endowed with
their respective Zariski topologies, for which a closed set is the zero lo-
cus of polynomials in Fq[X1, . . . , Xn] or of homogeneous polynomials in
Fq[X0, . . . , Xn]. For K := Fq or K := Fq, we say that a subset V ⊂ An
is an affine K-variety if it is the set of common zeros in An of polyno-
mials F1, . . . , Fm ∈ K[X1, . . . , Xn]. Correspondingly, a projective K-variety
is the set of common zeros in Pn of a family of homogeneous polynomi-
als F1, . . . , Fm ∈ K[X0, . . . , Xn]. We think a projective or affine K-variety
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as being equipped with the induced Zariski topology. We shall frequently
denote by V (F1, . . . , Fm) or {F1 = 0, . . . , Fs = 0} the affine or projective
K-variety consisting of the common zeros of the polynomials F1, . . . , Fm.
The set V (Fq) := V ∩ Fnq in the affine case, or V (Fq) := V ∩ Pn(Fq) in the
projective case, is the set of q-rational points of V .

A K-variety V is K-irreducible if it cannot be expressed as a finite union
of proper K-subvarieties of V . Further, V is absolutely irreducible if it is irre-
ducible as an Fq-variety. Any K-variety V can be expressed as an irredundant
union V = C1 ∪ · · · ∪ Cs of irreducible (absolutely irreducible) K-varieties,
unique up to reordering, which are called the irreducible (absolutely irre-
ducible) K-components of V .

For a K-variety V contained in An or Pn, we denote by I(V ) its defin-
ing ideal, the set of all polynomials in K[X1, . . . , Xn], or in K[X0, . . . , Xn],
vanishing on V . The coordinate ring K[V ] of V is defined as the quotient
ring K[X1, . . . , Xn]/I(V ) or K[X0, . . . , Xn]/I(V ). The dimension dimV of
a K-variety V is the length r of the longest chain V0  V1  · · ·  Vr
of nonempty irreducible K-varieties contained in V . A K-variety is called
equidimensional if all its irreducible K-components are of the same dimen-
sion.

The degree deg V of an irreducible K-variety V is the maximum number
of points lying in the intersection of V with a linear space L of codimension
dimV , for which V ∩L is a finite set. More generally, following [Hei83] (see
also [Ful84]), if V = C1 ∪ · · · ∪ Cs is the decomposition of V into irreducible
K-components, we define the degree of V as

deg V :=

s∑
i=1

deg Ci.

An important tool for our estimates is the following Bézout inequality (see
[Hei83], [Ful84], [Vog84]): if V and W are K-varieties, then

(2.1) deg(V ∩W ) ≤ deg V · degW.

Let V be a variety contained in An and let I(V ) ⊂ Fq[X1, . . . , Xn] be
the defining ideal of V . Let x be a point of V . The dimension dimx V of
V at x is the maximum of the dimensions of the irreducible components
of V that contain x. If I(V ) = (F1, . . . , Fm), the tangent space TxV to V
at x is the kernel of the Jacobian matrix (∂Fi/∂Xj)1≤i≤m, 1≤j≤n(x) of the
polynomials F1, . . . , Fm with respect to X1, . . . , Xn at x. The point x is
regular if dim TxV = dimx V . Otherwise, dim TxV > dimx V and the point
x is called singular. The set of singular points of V is the singular locus
Sing(V ) of V . A variety is called nonsingular if its singular locus is empty.
For a projective variety, the concepts of tangent space, regular and singular
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point can be defined by considering an affine neighborhood of the point
under consideration.

Elements F1, . . . , Fn−r in K[X1, . . . , Xn] or in K[X0, . . . , Xn] form a reg-
ular sequence if F1 is nonzero and no Fi is a zero divisor in the quotient ring
K[X1, . . . , Xn]/(F1, . . . , Fi−1) or K[X0, . . . , Xn]/(F1, . . . , Fi−1) for 2 ≤ i ≤
n−r. In that case, the (affine or projective) K-variety V := V (F1, . . . , Fn−r)
they define is equidimensional of dimension r, and is called a set-theoretic
complete intersection. If the ideal (F1, . . . , Fn−r) is radical, then we say that
V is an ideal-theoretic complete intersection. If V ⊂ Pn is an ideal-theoretic
complete intersection defined over K, of dimension r and degree δ, and
F1, . . . , Fn−r is a system of generators of I(V ), then the degrees d1, . . . , dn−r
depend only on V and not on the system of generators. Arranging the di in
such a way that d1 ≥ · · · ≥ dn−r, we call d := (d1, . . . , dn−r) the multidegree
of V . The so-called Bézout theorem (see, e.g., [Har92, Theorem 18.3]) asserts
that

deg V = d1 · · · dn−r.
In what follows we shall deal with a particular class of complete inter-

sections, which we now define. A K-variety V is regular in codimension m
if its singular locus Sing(V ) has codimension at least m + 1 in V , that is,
dimV −dim Sing(V ) ≥ m+1. A complete intersection V which is regular in
codimension 1 is called normal (actually, normality is a general notion that
agrees on complete intersections with the one we define here). A fundamen-
tal result for projective complete intersections is the Hartshorne connected-
ness theorem (see, e.g., [Kun85, Theorem VI.4.2]), which we now state. If
V ⊂ Pn is a set-theoretic complete intersection defined over K, and W ⊂ V
is any K-subvariety of codimension at least 2, then V \W is connected in
the Zariski topology of Pn over K. Applying the Hartshorne connectedness
theorem with W := Sing(V ), one deduces the following result.

Theorem 2.1. If V ⊂ Pn is a normal set-theoretic complete intersec-
tion, then V is absolutely irreducible.

Let V and W be irreducible K-varieties of the same dimension and let
f : V →W be a regular map for which f(V ) = W , where f(V ) denotes the
closure of f(V ) with respect to the Zariski K-topology of W . Then f induces
a ring extension K[W ] ↪→ K[V ] by composition with f . We say that f is
a finite morphism if this extension is integral, i.e. each η ∈ K[V ] satisfies
a monic equation with coefficients in K[W ]. A basic fact is that a finite
morphism is necessarily closed. Another fact concerning finite morphisms
we shall use is that the preimage f−1(S) of an irreducible closed subset
S ⊂W is equidimensional of dimension dimS.

3. Estimating the mean V(d, s,a): a geometric approach. Let
s, d ∈ N with d < q and 1 ≤ s ≤ d − 2 and a := (ad−1, . . . , ad−s) ∈ Fsq .
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Denote fa := T d+ad−1T
d−1+· · ·+ad−sT d−s. For every b := (bd−s−1, . . . , b1)

∈ Fd−s−1q , denote by fb := fab ∈ Fq[T ] the polynomial

fb := fa + bd−s−1T
d−s−1 + · · ·+ b1T.

Our first objective is to determine the asymptotic behavior of the average
value set cardinality

V(d, s,a) :=
1

qd−s−1

∑
b∈Fd−s−1

q

V(fb).

For this purpose, we use the following result.

Theorem 3.1 ([C–P14, Theorem 2.1]). Under the assumptions above,

(3.1) V(d, s,a) =
d−s∑
r=1

(−1)r−1
(
q

r

)
q1−r +

1

qd−s−1

d∑
r=d−s+1

(−1)r−1χar ,

where χar denotes the number of r-element subsets χr of Fq such that there
exists (b, b0) ∈ Fd−sq for which (fb + b0)|χr ≡ 0.

According to this result, we have to determine the asymptotic behavior
of χar for d − s + 1 ≤ r ≤ d. In [C–P14] we introduce an affine Fq-variety
V ar ⊂ Ar such that the number of q-rational points of V ar with pairwise dis-
tinct coordinates equals χar . Here we follow a different approach, considering
the incidence variety consisting of the set of points (b, b0, α1, . . . , αr) with
χr := {α1, . . . , αr} and (fb + b0)|χr ≡ 0.

Fix r with d − s + 1 ≤ r ≤ d. Let T, T1, . . . , Tr, Bd−s−1, . . . , B1, B0 be
new indeterminates over Fq, let T := (T1, . . . , Tr), B := (Bd−s−1, . . . , B1)
and B0 := (B, B0), and let F ∈ Fq[B0, T ] be the polynomial

(3.2) F := T d +

d−1∑
i=d−s

aiT
i +

d−s−1∑
i=1

BiT
i +B0.

Consider the affine quasi-Fq-variety Γr ⊂ Ad−s+r defined as follows:

Γr := {(b0,α) ∈ Ad−s × Ar : F (b0, αj) = 0 (1 ≤ j ≤ r),
αi 6= αj (1 ≤ i < j ≤ r)}.

Our next result shows how the number |Γr(Fq)| of q-rational points of Γr is
related to χar .

Lemma 3.2. Let r be an integer with d− s+ 1 ≤ r ≤ d. Then

|Γr(Fq)|/r! = χar .

Proof. Let (b0,α) ∈ Γr(Fq) and let σ : {1, . . . , r} → {1, . . . , r} be an
arbitrary permutation. Let σ(α) be the image of α under the linear map-
ping induced by σ. Then it is easy to see that (b0, σ(α)) is also in Γr(Fq).
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Furthermore, σ(α) = α if and only if σ is the identity permutation. This
shows that Sr, the symmetric group of r elements, acts on Γr(Fq) and each
orbit of this action has r! elements.

The orbit of (b0,α) ∈ Γr(Fq) uniquely determines a polynomial F (b0, T )
∈ Fq[T ] and a set χr := {α1, . . . , αr} ⊂ Fq with |χr| = r and F (b0, T )|χr ≡ 0.
On the other hand, each subset χr := {α1, . . . , αr} as in the statement
of Theorem 3.1 determines a unique b0 ∈ Fd−sq such that the polynomial
F (b0, T ) vanishes on χr, and thus a unique orbit as above. This implies that
the number of orbits of Γr(Fq) is equal to χar and finishes the proof of the
lemma.

To estimate |Γr(Fq)| we shall consider the Zariski closure cl(Γr) of
Γr ⊂ Ad−s+r. The equations defining cl(Γr) will be expressed using the
following notation. Let T,X1, . . . , Xl+1 be indeterminates over Fq and let
f ∈ Fq[T ] be a polynomial of degree at most l. For notational convenience,
we define the 0th divided difference ∆0f ∈ Fq[X1] of f as ∆0f := f(X1). Fur-
ther, for 1 ≤ i ≤ l we define the ith divided difference ∆if ∈ Fq[X1, . . . , Xi+1]
of f as

∆if(X1, . . . , Xi+1) =
∆i−1f(X1, . . . , Xi)−∆i−1f(X1, . . . , Xi−1, Xi+1)

Xi −Xi+1
.

With these notations, consider the affine Fq-variety Γ ∗r ⊂ Ad−s+r defined as

Γ ∗r := {(b0,α) ∈ Ad−s × Ar : ∆i−1F (b0, α1, . . . , αi) = 0 (1 ≤ i ≤ r)},
where ∆i−1F (b0, T1, . . . , Ti) is the (i − 1)th divided difference of F (b0, T ).
The next result establishes the relation between the varieties Γr and Γ ∗r .

Lemma 3.3. With the notations above,

(3.3) Γr = Γ ∗r ∩ {(b0,α) : αi 6= αj (1 ≤ i < j ≤ r)}.
Proof. Let (b0,α) ∈ Γr. By the definition of the divided differences of

F (b0, T ) we easily conclude that (b0,α) ∈ Γ ∗r . Conversely, let (b0,α) be
in the set on the right-hand side of (3.3). We claim that F (b0, αk) = 0
for 1 ≤ k ≤ r. We observe that F (b0, α1) = ∆0F (b0, α1) = 0. Arguing
inductively, suppose that F (b0, α1) = · · · = F (b0, αi−1) = 0. By defini-
tion, ∆i−1F (b0, α1 · · ·αi) can be expressed as a linear combination with
nonzero coefficients of the differences F (b0, αj+1) − F (b0, αj) with 1 ≤ j
≤ i − 1. Therefore, combining the inductive hypothesis with the fact that
∆i−1F (b0, α1, . . . , αi) = 0, we easily see that F (b0, αi) = 0, finishing the
proof of the claim.

4. On the geometry of Γ ∗r . From now on we assume that the char-
acteristic p of Fq is strictly greater than 2. This section is devoted to es-
tablishing several facts concerning the geometry of the affine Fq-variety Γ ∗r .
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We first show that the defining polynomials of Γ ∗r form a regular sequence,
which in particular allows us to determine the dimension of Γ ∗r . Then we
analyze the singular locus of Γ ∗r , showing that it has codimension at least 2
in Γ ∗r . Finally, we show a number of results concerning the projective closure
pcl(Γ ∗r ) of Γ ∗r and the set of points of pcl(Γ ∗r ) at infinity. The final outcome
is that both pcl(Γ ∗r ) and the set of points of pcl(Γ ∗r ) at infinity are normal
complete intersections, which will allow us to obtain a suitable estimate of
the number of q-rational points of Γ ∗r .

Lemma 4.1. Γ ∗r is a (set-theoretic) complete intersection of dimension
d− s.

Proof. Consider the graded lexicographic order of Fq[B0,T ] with Tr >
· · · > T1 > Bd−s−1 > · · · > B0. It is easy to see that for each i the
polynomial ∆i−1F (B0, T1, . . . , Ti) has degree d − i + 1 in the variables T ,
and the monomial T d−i+1

i occurs in the dense representation of such a
polynomial with nonzero coefficient. We deduce that the leading term of
∆i−1F (B0, T1, . . . , Ti) is T d−i+1

i for 1 ≤ i ≤ r in the monomial order defined
above. Hence, the leading terms of ∆i−1F (B0, T1, . . . , Ti) (1 ≤ i ≤ r) are
relatively prime and thus they form a Gröbner basis of the ideal J that they
generate (see, e.g., [CLO92, §2.9, Proposition 4]), the initial ideal of J being
generated by {T d−i+1

i : 1 ≤ i ≤ r}. Furthermore, since {T d−i+1
i : 1 ≤ i ≤ r}

forms a regular sequence in Fq[B0,T ], from, e.g., [Eis95, Proposition 15.15],
we conclude that {∆i−1F (B0, T1, . . . , Ti) : 1 ≤ i ≤ r} also forms a regular
sequence in Fq[B0,T ]. This finishes the proof of the lemma.

4.1. The dimension of the singular locus of Γ ∗r and consequences.
As announced above, we study the dimension of the singular locus of Γ ∗r . Our
aim is to show that such a singular locus has codimension at least 2 in Γ ∗r .

We start with the following simple criterion of nonsingularity.

Lemma 4.2. Let JF ∈ Fq[B0,T ]r×(d−s+r) be the Jacobian matrix of the
polynomials F (B0, Ti) (1≤ i≤ r) with respect to B0, T and let (b0,α) ∈ Γ ∗r .
If JF (b0,α) has full rank, then (b0,α) is a nonsingular point of Γ ∗r .

Proof. Considering the Newton form of the polynomial interpolating
F (b0,T )at α1, . . . , αr, we easily deduce that F (b0, αi) = 0 for 1 ≤ i ≤ r. This
shows that F (B0, Ti) vanishes on Γ ∗r for 1 ≤ i ≤ r. As a consequence, any
element of the tangent space T(b0,α)Γ ∗r belongs to the kernel of the Jacobian
matrix JF (b0,α).

By hypothesis, the (r × (d − s + r))-matrix JF (b0,α) has full rank r,
and thus its kernel has dimension d − s. We conclude that T(b0,α)Γ ∗r has
dimension at most d− s. Since Γ ∗r is equidimensional of dimension d− s, it
follows that (b0,α) is a nonsingular point of Γ ∗r .
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Let (b0,α) ∈ Γ ∗r with α := (α1, . . . , αr), and let fb0 := F (b0, T ). Then

JF (b0,α) =


αd−s−11 · · · α1 1 f ′b0(α1) · · · 0

...
...

...
...

. . .
...

αd−s−1r · · · αr 1 0 · · · f ′b0(αr)

 .

We observe that if all the roots in Fq of fb0 are simple, then JF (b0,α) has
full rank and (b0,α) is a regular point of Γ ∗r . Therefore, to prove that the
singular locus of Γ ∗r is a subvariety of codimension at least 2, it suffices to
consider the set of points (b0,α) ∈ Γ ∗r for which at least one coordinate of
α is a multiple root of fb0 . In particular, fb0 must have multiple roots. We
start by considering the “extreme” case where f ′b0 = 0.

Lemma 4.3. If d − s ≥ 3, then the set W1 of points (b0,α) ∈ Γ ∗r with
f ′b0 = 0 is contained in a subvariety of codimension 2 of Γ ∗r .

Proof. Consider the morphism of Fq-varieties defined as follows:

(4.1) Ψr : Γ ∗r → Ad−s, (b0,α) 7→ b0.

We claim that Ψr is a finite morphism. To prove this, it is enough to show
that the coordinate function tj of Fq[Γ ∗r ] defined by Tj satisfies a monic

equation with coefficients in Fq[B0] for 1 ≤ j ≤ r. Since the polynomial
F (B0, Tj) vanishes on Γ ∗r and is a monic element of Fq[B0][Tj ], it provides
the monic equation annihilating tj that we are looking for.

Since d− s ≥ 3, we have d− s− 1 ≥ 2 and the condition f ′b0 = (fa)′ +∑d−s−1
j=1 jbjT

j−1 = 0 implies b1 = b2 = 0. It follows that the set of points

(b0,α) ∈ Γ ∗r with f ′b0 = 0 is a subset of Ψ−1r (Z1,2), where Z1,2 ⊂ Ad−s
is the variety of dimension d − s − 2 defined by B1 = B2 = 0. Taking
into account that Ψr is a finite morphism, we deduce that Ψ−1r (Z1,2) has
dimension d− s− 2.

In what follows we shall assume that f ′b0 is nonzero and fb0 has multiple
roots. We analyze the case where exactly one of the coordinates of α is a
multiple root of fb0 .

Lemma 4.4. Suppose that f ′b0 6= 0 and there exists a unique coordinate
αi of α which is a multiple root of fb0. Then (b0,α) is a regular point
of Γ ∗r .

Proof. Assume without loss of generality that α1 is the only multiple
root of fb0 among the coordinates of α. According to Lemma 4.2, it suffices
to show that JF (b0,α) has full rank. For this purpose, we observe that the
(r × r)-submatrix of JF (b0,α) consisting of the (d − s)th column and the
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last r − 1 columns,

ĴF (b0,α) :=


1 0 · · · 0

1 f ′b0(α2) · · · 0
...

...
. . .

...

1 0 · · · f ′b0(αr)

 ,

is nonsingular. Indeed, by hypothesis αi is a simple root of f ′b0 , which implies
f ′b0(αi) 6= 0 for i ≥ 2. We conclude that JF (b0,α) has full rank.

The next case to be discussed is when two distinct multiple roots of fb0
occur among the coordinates of α.

Lemma 4.5. LetW2 denote the set of points (b0,α) ∈ Γ ∗r for which there
exist 1 ≤ i < j ≤ r such that αi 6= αj and αi, αj are multiple roots of fb0.
Then W2 is contained in a subvariety of codimension 2 of Γ ∗r .

Proof. Let (b0,α) ∈ W2. We may assume that f ′b0 6= 0. Since fb0 has at
least two distinct multiple roots, the greatest common divisor of fb0 and f ′b0
has degree at least 2. Hence,

Res(fb0 , f
′
b0) = Subres(fb0 , f

′
b0) = 0,

where Res(fb0 , f
′
b0

) and Subres(fb0 , f
′
b0

) denote the resultant and the first-
order subresultant of fb0 and f ′b0 respectively. Furthermore, since fb0 has
degree d, by basic properties of resultants and subresultants it follows that

Res(fb0 , f
′
b0) = Res

(
F (B0, T ), ∆1F (B0, T, T ), T

)∣∣
B0=b0

,

Subres(fb0 , f
′
b0) = Subres

(
F (B0, T ), ∆1F (B0, T, T ), T

)∣∣
B0=b0

,

where

R := Res
(
F (B0, T ), ∆1F (B0, T, T ), T

)
,

S1 := Subres
(
F (B0, T ), ∆1F (B0, T, T ), T

)
are the resultant and the first-order subresultant, with respect to T , of
F (B0, T ) and ∆1F (B0, T, T ). It follows that W2 ∩Γ ∗r ⊂ Ψ−1r (Z2), where Ψr
is the morphism (4.1) and Z2 ⊂ Ad−s is the variety defined by

(4.2) R(B0) = 0, S1(B0) = 0.

Observe that R is a nonzero polynomial because F (B0, T ) is a separable
element of Fq[B0][T ]. We claim that S1 is also nonzero. Indeed, if p does not

divide d(d− 1), then the nonzero term d(d− 1)d−2Bd−2
1 occurs in the dense

representation of S1. On the other hand, if p divides d(d − 1), since p > 2,
the nonzero term 2 (−1)d(d−2)d−2Bd−1

2 appears in the dense representation
of S1.
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We claim that R and S1 form a regular sequence in Fq[B0]. Indeed, since
p > 2, R is an irreducible element of Fq[B0] (see Theorem A.3 below). If
S1 were a zero divisor in Fq[B0]/(R), then it would be a multiple of R
in Fq[B0], which is impossible because max{degB1

R, degB2
R} = d, while

max{degB1
S1,degB2

S1} ≤ d − 1. It follows that dimZ2 = d − s − 2, and
hence dimΨ−1r (Z2) = d− s− 2. Therefore, W2 is contained in a subvariety
of Γ ∗r of codimension 2.

It remains to consider the case where only one multiple root of fb0 occurs
among the coordinates of α, but at least two distinct coordinates of α take
that value. Then either all the remaining coordinates of α are simple roots
of fb0 , or at least one more coordinate is the same multiple root. Our next
result deals with the first of these two cases.

Lemma 4.6. Let (b0,α) ∈ Γ ∗r satisfy the following conditions:

• there exist 1 ≤ i < j ≤ r such that αi = αj and αi is a multiple root
of fb0;
• for any k /∈ {i, j}, αk is a simple root of fb0.

Then (b0,α) is a regular point of Γ ∗r .

Proof. The argument is similar to that of the proof of Lemma 4.2. We
can assume that i = 1 and j = 2. Since the polynomials ∆1F (B0, T1, T2) and
F (B0, Ti) (2 ≤ i ≤ r) vanish on Γ ∗r , the tangent space T(b0,α)Γ ∗r is included

in the kernel of the Jacobian matrix J∆,F (b0,α) of ∆1F (B0, T1, T2) and
F (B0, Ti) (2 ≤ i ≤ r) with respect to B0,T . If J∆,F (b0,α) has full rank r,
then its kernel has dimension d − s. Hence dim T(b0,α)Γ ∗r ≤ d − s, which
proves that (b0,α) is regular point of Γ ∗r .

It is easy to see that ∂ ∆1F
∂B0

(b0, α1, α1) = 0 and ∂ ∆1F
∂Bi

(b0, α1, α1) = iαi−11

for i ≥ 1. Therefore,

J∆,F (b0,α) :=



(d− s− 1)αd−s−21 · · · 1 0 ∗ ∗ 0 · · · 0

αd−s−12 · · · α2 1 0 0 0 · · · 0

αd−s−13 · · · α3 1 0 0 γ3 · · · 0
...

...
...

...
...

...
. . .

...

αd−s−1r · · · αr 1 0 0 0 · · · γr


,

where γi := f ′b0(αi) for i ≥ 3. Since αi is a simple root of fb0 for i ≥ 3, it
follows that γi 6= 0 for i ≥ 3, which implies that J∆,F (b0,α) has rank r.
This finishes the proof.

Finally, we consider the set of points (b0,α) ∈ Γ ∗r such that the value of
at least three distinct coordinates of α is the same multiple root of fb0 .
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Lemma 4.7. Let W3 ⊂ Γ ∗r be the set of points (b0,α) for which there
exist 1 ≤ i < j < k ≤ r such that αi = αj = αk and αi is a multiple root of
fb0. If d− s ≥ 3, then W3 is contained in a codimension-2 subvariety of Γ ∗r .

Proof. Let (b0,α) ∈ W3. We may assume that α1 = α2 = α3 is a
multiple root of fb0 . Taking into account that (b0,α) satisfies the equations

F (B0, T1) = ∆F (B0, T1, T2) = ∆2F (B0, T1, T2, T3) = 0,

we see that α1 is a common root of fb0 , ∆F (b0, T, T ) and ∆2F (b0, T, T, T ).
Hence,

(4.3) Res(fb0 , f
′
b0) = Res

(
F (B0, T ), ∆1F (B0, T, T ), T

)∣∣
B0=b0

= 0.

Here the first equality holds by elementary properties of resultants, because
degT F (B0, T ) = degT F (b0, T ).

Suppose first that ∆2F (b0, T, T, T ) = 0. Then

0 = 2∆2F (b0, T, T, T ) = (fa)′′ +

d−s−1∑
j=2

j(j − 1)bjT
j−2 = 0.

This in particular implies 2b2 = 0, and thus b2 = 0, since p > 2 by hy-
pothesis. As a consequence of this identity and (4.3), the set W ′3 of points
(b0,α) ∈ Γ ∗r with ∆2F (b0, T, T, T ) = 0 is contained in Ψ−1r (Z ′3), where
Z ′3 ⊂ Ad−s is the variety defined by the equations

B2 = 0, R(B0) := Res
(
F (B0, T ), ∆1F (B0, T, T ), T

)
= 0.

Theorem A.3 below asserts that R is an irreducible element of Fq[B0], which
has degree d − 1 in B0. Thus R and B2 form a regular sequence in Fq[B0],
and the variety Z ′3 ⊂ Ad−s they define has dimension d − s − 2. Let Ψr be
the mapping (4.1). Since Ψr is a finite morphism, Ψ−1r (Z ′3) has dimension
d − s − 2. Therefore, we may assume that ∆2F (b0, T, T, T ) is a nonzero
polynomial.

Now suppose that p does not divide d. Then fb0 and f ′b0 are nonzero poly-
nomials of degree d and d− 1 respectively. Hence, by elementary properties
of resultants,

Res(fb0 , f
′
b0) = Res

(
F (B0, T ), ∆1F (B0, T, T ), T

)∣∣
B0=b0

,

Res(f ′b0 , ∆
2fb0) = Res

(
∆1F (B0, T, T ), ∆2F (B0, T, T, T ), T

)∣∣
B0=b0

.

We conclude that (W3 \W ′3) ∩ Γ ∗r ⊂ Ψ−1r (Z3), where Ψr is the morphism of
(4.1) and Z3 is the subvariety of Ad−s defined by the equations

R := Res
(
F (B0, T ), ∆1F (B0, T, T ), T

)
= 0,

R′ := Res
(
∆1F (B0, T, T ), ∆2F (B0, T, T, T ), T

)
= 0.

As asserted by Theorem A.3, R is an irreducible element of Fq[B0] of degree
d − 1 in B0. On the other hand, the nonzero polynomial R′ has degree 0
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in B0. As a consequence, the two polynomials form a regular sequence in
Fq[B0], which shows that Z3 has codimension 2 in Ad−s. This proves that
Ψ−1r (Z3) is a codimension-2 subvariety of Γ ∗r .

Next suppose that p divides d. If there exists l such that lal 6≡ 0 mod p,
then f ′b0 and ∆1F (B0, T, T ) are of the same degree in T and the argument
above works mutatis mutandis.

On the other hand, if lal ≡ 0 mod p for d − s ≤ l ≤ d − 1, we have
two possibilities, according to whether or not (d− s− 1)bd−s−1 = 0. If not,
then f ′b0 and ∆1F (B0, T, T ) are of the same degree in T and the previous

argument works. If bd−s−1 = 0, then (b0,α) ∈ Ψ−1r (Z4), where Z4 is the
subvariety of Ad−s defined by

R(B0) = 0, Bd−s−1 = 0.

It is easy to see that R and Bd−s−1 form a regular sequence in Fq[B0],
which shows that Ψ−1r (Z4) is a subvariety of codimension 2 in Γ ∗r . Finally,
if p divides d − s − 1, then p does not divide d − s − 2, and we can repeat
previous arguments considering the cases bd−s−2 = 0 and bd−s−2 6= 0. This
finishes the proof of the lemma.

Now we are in a position to prove the main result of this section. Ac-
cording to Lemmas 4.3–4.7, the set of singular points of Γ ∗r is contained in
union of W1, W2 and W3, defined in the relevant statements. Since each Wi

is contained in a codimension-2 subvariety of Γ ∗r , we obtain the following
result.

Theorem 4.8. Let p > 2 and q > d. If d−s ≥ 3, then the singular locus
of Γ ∗r has codimension at least 2 in Γ ∗r .

We finish the section by discussing a few consequences of the analysis
underlying the proof of Theorem 4.8.

Corollary 4.9. Under the assumptions of Theorem 4.8, the ideal J ⊂
Fq[B0,T ] generated by ∆i−1F (B0, T1, . . . , Ti) (1 ≤ i ≤ r) is radical, and the
variety Γ ∗r is an ideal-theoretic complete intersection of dimension d− s.

Proof. Let J∆(B0,T ) be the Jacobian matrix of the polynomials
∆i−1F (B0, T1, . . . , Ti) (1 ≤ i ≤ r) with respect to B0,T . We claim that
the set of points (b0,α) ∈ Γ ∗r for which J∆(b0,α) does not have full rank is
contained in a subvariety of Γ ∗r of codimension 1.

Indeed, let (b0,α) ∈ Γ ∗r . In the proof of Lemma 4.2 we showed that
F (B0, Tj) ∈ J for 1 ≤ j ≤ r. This implies that ∇F (b0, αj) is a linear
combination of the gradients of the polynomials ∆i−1F (b0,α) for 1 ≤ i ≤ r.
Hence rank JF (b0,α) ≤ rank J∆(b0,α).

Moreover, if JF (b0,α) does not have full rank, then fb0 has multiple
roots. By Lemma 4.3, the set of points (b0,α) ∈ Γ ∗r for which f ′b0 = 0 is con-
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tained in a subvariety of codimension 2 of Γ ∗r . On the other hand, if (b0,α)
∈ Γ ∗r is such that fb0 has multiple roots and f ′b0 6= 0, then (b0,α) ∈ Ψ−1r (Z),

where Z is the subvariety of Ad−s defined by

Res
(
F (B0,T ), ∆1F (B0,T,T ), T

)
= 0.

We see that Ψ−1r (Z) has codimension 1 in Γ ∗r , finishing the proof of our
claim.

By Lemma 4.1 the polynomials ∆i−1F (B0, T1, . . . , Ti) (1 ≤ i ≤ r) form
a regular sequence in Fq[B0,T ]. Therefore, by [Eis95, Theorem 18.15], J is
a radical ideal, which in turn implies that Γ ∗r is an ideal-theoretic complete
intersection of dimension d− s.

4.2. The geometry of the projective closure of Γ ∗r . To estimate
the number of q-rational points of Γ ∗r we need information on the behavior
of Γ ∗r at infinity. For this purpose, we consider its projective closure
pcl(Γ ∗r ) ⊂ Pd−s+r, whose definition we now recall. Consider the embed-
ding of Ad−s+r into the projective space Pd−s+r which assigns to any point
(b0,α) ∈ Ad−s+r the point (bd−s−1 : · · · : b0 : 1 : α1 : · · · : αr) ∈ Pd−s+r. The
closure of the image of Γ ∗r under this embedding in the Zariski topology of
Pd−s+r is called the projective closure of Γ ∗r . The points of pcl(Γ ∗r ) lying in
the hyperplane {T0 = 0} are called the points of pcl(Γ ∗r ) at infinity .

It is well-known that pcl(Γ ∗r ) is the Fq-variety of Pd−s+r defined by
the homogenizations F h ∈ Fq[B0, T0,T ] of all polynomials F in the ideal
J ⊂ Fq[B0,T ] generated by ∆i−1F (B0, T1, . . . , Ti) (1 ≤ i ≤ r). We denote
by J h the ideal generated by all the polynomials F h with F ∈ J . Since
J is radical, so is J h (see, e.g., [Kun85, §I.5, Exercise 6]). Furthermore,
pcl(Γ ∗r ) is equidimensional of dimension d − s (see, e.g., [Kun85, Proposi-
tions I.5.17 and II.4.1]) and of degree equal to degΓ ∗r (see, e.g., [CGH91,
Proposition 1.11]).

Lemma 4.10. The homogenized polynomials ∆i−1F (B0, T1, . . . , Ti)
h

(1 ≤ i ≤ r) generate the ideal J h. Furthermore, pcl(Γ ∗r ) is an ideal-theoretic
complete intersection of dimension d− s and degree d!/(d− r)!.

Proof. According to Lemma 4.1, the polynomials ∆i−1F (B0, T1, . . . , Ti)
(1 ≤ i ≤ r) form a Gröbner basis of the ideal J with the graded lexicograph-
ical order defined by Tr > · · · > T1 > Bd−s−1 > · · · > B0. Therefore, the
first assertion follows from, e.g., [CLO92, §8.4, Theorem 4]. In particular,
pcl(Γ ∗r ) is an ideal-theoretic complete intersection. Hence, [Har92, Theo-
rem 18.3] proves that the degree of pcl(Γ ∗r ) is d!/(d− r)!.

Our next purpose is to study the singular points of pcl(Γ ∗r ). We start
with the following characterization of the points of pcl(Γ ∗r ) at infinity.
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Lemma 4.11. pcl(Γ ∗r ) ∩ {T0 = 0} ⊂ Pd−s−1+r is a linear variety of
dimension d− s− 1.

Proof. According to Lemma 4.10, the homogeneous polynomials
∆i−1F (B0, T1, . . . , Ti)

h (1 ≤ i ≤ r) generate the ideal J h. Since
∆i−1F (B0, T1, . . . , Ti)

h|T0=0 = T d−i+1
i + monomials of positive degree in

T1, . . . , Ti−1, we conclude that pcl(Γ ∗r ) ∩ {T0 = 0} is the linear Fq-variety
{T1 = 0, . . . , Tr = 0}, which finishes the proof.

Now we are able to prove the main result of this section, which summa-
rizes all the facts we need concerning the projective variety pcl(Γ ∗r ).

Theorem 4.12. Under the assumptions of Theorem 4.8, the projective
variety pcl(Γ ∗r ) ⊂ Pd−s+r is a normal absolutely irreducible ideal-theoretic
complete intersection of dimension d− s and degree d!/(d− r)!.

Proof. Lemma 4.10 shows that pcl(Γ ∗r ) is an ideal-theoretic complete
intersection. On the other hand, combining Theorem 4.8 and Lemma 4.11
we see that the singular locus of pcl(Γ ∗r ) has codimension at least 2 in
pcl(Γ ∗r ). This implies that pcl(Γ ∗r ) is regular in codimension 1, and thus
normal. Finally, by Theorem 2.1 we conclude that pcl(Γ ∗r ) is absolutely
irreducible.

As a consequence of Theorem 4.12, Γ ∗r ⊂ Ad−s+r is also absolutely irre-
ducible of dimension d− s and degree d!/(d− r)!. Furthermore, Lemma 3.3
shows that Γr is a nonempty Zariski open subset of Γ ∗r . Since Γ ∗r is absolutely
irreducible, we conclude that the Zariski closure of Γr is equal to Γ ∗r .

5. The number of q-rational points of Γr. As before, let p > 2 and
let d and s be positive integers with q > d and 1 ≤ s ≤ d− 3. In this section
we determine the asymptotic behavior of the average value set cardinality
V(d, s,a) of the family of polynomials {fb : b ∈ Fd−s−1q }. By Theorem 3.1
we have

V(d, s,a) =
d−s∑
r=1

(−1)r−1
(
q

r

)
q1−r +

1

qd−s−1

d∑
r=d−s+1

(−1)r−1χar ,

where χar denotes the number of r-element subsets χr of Fq such that there
exists b0 ∈ Fd−sq with fb0 |χr ≡ 0. Combining Lemmas 3.2 and 3.3 shows that

χar =
|Γr(Fq)|
r!

=
1

r!

∣∣∣Γ ∗r (Fq) \
⋃
i 6=j
{Ti = Tj}

∣∣∣
for each r with d− s+ 1 ≤ r ≤ d. In the next section we apply the results of
Section 4 on the geometry of Γ ∗r to estimate the number of q-rational points
of Γ ∗r .
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5.1. Estimates on the number of q-rational points of normal
complete intersections. We shall use an estimate on the number of
q-rational points of a projective normal complete intersection of [CMP12]
(see also [CM07] or [GL02] for other estimates). More precisely, if V ⊂ Pn
is a normal complete intersection defined over Fq of dimension m ≥ 2,
degree δ and multidegree d := (d1, . . . , dn−m), then (see [CMP12, Theo-
rem 1.3])

(5.1)
∣∣|V (Fq)| − pm

∣∣ ≤ (δ(D − 2) + 2)qm−1/2 + 14D2δ2qm−1,

where pm := qm + qm−1 + · · ·+ q + 1 = |Pm(Fq)| and D :=
∑n−m

i=1 (di − 1).
From Theorem 4.12 we know that pcl(Γ ∗r ) ⊂ Pd−s+r is a normal complete

intersection defined over Fq. Therefore, applying (5.1) we obtain∣∣|pcl(Γ ∗r )(Fq)| − pd−s
∣∣ ≤ (δr(Dr − 2) + 2)qd−s−1/2 + 14D2

rδ
2
rq
d−s−1,

where Dr :=
∑r

i=1(d − i) = rd − r(r + 1)/2 and δr := d!/(d− r)!. On the
other hand, since pcl(Γ ∗r )∞ := pcl(Γ ∗r ) ∩ {T0 = 0} ⊂ Pd−s−1+r is a linear
variety of dimension d− s− 1, the number of q-rational points of pcl(Γ ∗r )∞

is pd−s−1. Hence,∣∣|Γ ∗r (Fq)| − qd−s
∣∣ =

∣∣|pcl(Γ ∗r )(Fq)| − |pcl(Γ ∗r (Fq))∞| − pd−s + pd−s−1
∣∣(5.2)

=
∣∣|pcl(Γ ∗r )(Fq)| − pd−s

∣∣
≤ (δr(Dr − 2) + 2)qd−s−1/2 + 14D2

rδ
2
rq
d−s−1.

We also need an estimate on the number q-rational points of the affine
Fq-variety

Γ ∗,=r := Γ ∗r ∩
⋃

1≤i<j≤r
{Ti = Tj}.

We observe that Γ ∗,=r = Γ ∗r ∩ Hr, where Hr ⊂ Ad−s+r is the hypersur-
face defined by the polynomial Fr :=

∏
1≤i<j≤r(Ti − Tj). By the Bézout

inequality (2.1),

(5.3) degΓ ∗,=r ≤ δr
(
r

2

)
.

Furthermore, we claim that Γ ∗,=r has dimension at most d− s− 1. Indeed,
let (b0,α) ∈ Γ ∗,=r . We can assume that α1 = α2. From the definition of
divided differences we deduce that f ′b0(α1) = 0, which implies that fb0 has
multiple roots. By Corollary 4.9 the set of points (b0,α) of Γ ∗r for which
fb0 has multiple roots is contained in a subvariety of Γ ∗r of codimension at
least 1. This yields the claim.

Combining the claim with (5.3), applying, e.g., [CM06, Lemma 2.1], we
obtain

(5.4) |Γ ∗,=r (Fq)| ≤ δr
(
r

2

)
qd−s−1.
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Since Γr(Fq) = Γ ∗r (Fq) \ Γ ∗,=r (Fq), from (5.2) and (5.4) we deduce that∣∣|Γr(Fq)| − qd−s∣∣ ≤ ∣∣|Γ ∗r (Fq)| − qd−s
∣∣+ |Γ ∗,=r (Fq)|

≤ (δr(Dr − 2) + 2)qd−s−1/2

+ (14D2
rδ

2
r + r(r − 1)δr/2)qd−s−1.

As a consequence, we obtain the following result.

Theorem 5.1. Let p > 2 and q > d. If 1 ≤ s ≤ d − 3, then for any r
with d− s+ 1 ≤ r ≤ d we have∣∣∣∣χar − qd−s

r!

∣∣∣∣ ≤ 1

r!
(δr(Dr − 2) + 2)qd−s−1/2

+
1

r!
(14D2

rδ
2
r + r(r − 1)δr/2)qd−s−1,

where Dr := rd− r(r + 1)/2 and δr := d!/(d− r)!.

5.2. An estimate for V(d, s,a). Theorem 5.1 is the critical step in
estimating V(d, s,a).

Corollary 5.2. Under the assumptions of Theorem 5.1,

(5.5) |V(d, s,a)− µdq| ≤ d22d−1q1/2 +
7

2
d4

s−1∑
k=0

(
d

k

)2

(d− k)!.

Proof. According to Theorem 3.1, we have

(5.6) V(d, s,a)− µdq

=

d−s∑
r=1

(−q)1−r
((

q

r

)
− q

r

r!

)
+

1

qd−s−1

d∑
r=d−s+1

(−1)r−1
(
χar −

qd−s

r!

)
.

In [C–P14, Corollary 14] we obtained the following upper bound for the
absolute value of the first term on the right-hand side of (5.6):

A(d, s) :=

∣∣∣∣ d−s∑
r=1

(−q)1−r
((

q

r

)
− qr

r!

)∣∣∣∣ ≤ 1

2(d− s− 1)!
+

7

q
+

1

2e
≤ d.

Next we consider the second term. From Theorem 5.1 we have

B(d, s) :=
1

qd−s−1

d∑
r=d−s+1

∣∣∣∣χar − qd−s

r!

∣∣∣∣
≤ q1/2

d∑
r=d−s+1

δr(Dr−2)+2

r!
+ 14

d∑
r=d−s+1

D2
rδ

2
r

r!
+

d∑
r=d−s+1

δr
2(r−2)!

.
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Concerning the first term on the right-hand side, we see that

d∑
r=d−s+1

δr(Dr − 2) + 2

r!
≤

d∑
r=d−s+1

(
d

r

)
r(2d− 1− r)

2
≤ d22d−1.

Moreover,

d∑
r=d−s+1

D2
rδ

2
r

r!
=

d∑
r=d−s+1

(
d

r

)2 r2(2d− 1− r)2 r!
4

≤ 1

64
(2d− 1)4

s−1∑
k=0

(
d

k

)2

(d− k)!.

Finally,

d∑
r=d−s+1

δr
2(r − 2)!

=

d∑
r=d−s+1

(
d

r

)
r(r − 1)

2
=

s−1∑
k=0

(
d

k

)
(d− k)!

2 (d− k − 2)!
.

Therefore,

B(d, s) ≤ q1/2d22d−1 +
1

4

s−1∑
k=0

(
d

k

)
(d− k)! +

7

32
(2d− 1)4

s−1∑
k=0

(
d

k

)2

(d− k)!.

Combining the bounds for A(d, s) and B(d, s), we obtain the statement
of the corollary.

5.3. On the behavior of (5.5). In this section we analyze the be-
havior of the right-hand side of (5.5). The analysis consists of elementary
calculations, which will only be sketched.

Fix k with 0 ≤ k ≤ s − 1 and denote h(k) :=
(
d
k

)2
(d − k)!. Analyzing

the sign of the differences h(k + 1)− h(k) for 0 ≤ k ≤ s− 1, we deduce the
following remark, which we state without proof.

Remark 5.3. Let k0 := −1/2+
√

5 + 4d/2. Then h is either an increasing
function or a unimodal function in the integer interval [0, s−1], which reaches
its maximum at bk0c.

From Remark 5.3 we see that

(5.7)
s−1∑
k=0

(
d

k

)2

(d− k)! ≤ s
(

d

bk0c

)2

(d− bk0c)! =
s (d!)2

(d− bk0c)! (bk0c!)2
.

To obtain an upper bound for the right-hand side of (5.7) we shall use the
Stirling formula (see, e.g., [FS08, p. 747]): for m ∈ N, there exists θ with
0 ≤ θ < 1 such that m! = (m/e)m

√
2πmeθ/(12m).
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Applying the Stirling formula, we see that there exist θi (i = 1, 2, 3) with
0 ≤ θi < 1 such that

C(d, s) :=
s(d!)2

(d− bk0c)! (bk0c!)2

≤ sd2d+1e−d+bk0ce
θ1
6d
− θ2

12(d−bk0c)
− θ3

6bk0c

(d− bk0c)d−bk0c
√

2π(d−bk0c) bk0c2bk0c+1
.

By elementary calculations we obtain

(d− bk0c)−d+bk0c ≤ d−d+bk0cebk0c(d−bk0c)/d,
dbk0c

bk0c2bk0c
≤ e(d−bk0c2)/bk0c.

It follows that

C(d, s) ≤ sdd+1e2bk0ce
− bk0c

2

d
+ 1

6d
+
d−bk0c

2

bk0c

√
2π ed

√
d− bk0cbk0c

.

By the definition of bk0c, it is easy to see that d/(bk0c
√
d− bk0c) ≤ 5/2

and 2bk0c ≤ −1 +
√

5 + 4d ≤ −1/5 + 2
√
d. Therefore, taking into account

that d ≥ 4, we conclude that

C(d, s) ≤ 5

2

e109/30sdde2
√
d

√
2π ed

.

Combining this bound with Corollary 5.2 we obtain the following result.

Theorem 5.4. Under the assumptions and notations of Theorem 5.1,

|V(d, s,a)− µdq| ≤ d22d−1q1/2 + 133dd+5e2
√
d−d.

6. Estimating the second moment V2(d, s,a): combinatorial pre-
liminaries. Now we consider the second objective of this paper: estimating
the second moment of the value set cardinalities for the families of polyno-
mials under consideration.

As before, we assume that the characteristic p of Fq is greater than 2,
and fix integers d and s with d < q and 1 ≤ s ≤ d − 3. We also fix a :=
(ad−1, . . . , ad−s) ∈ Fsq and set fa := T d+ad−1T

d−1+· · ·+ad−sT d−s. Further,

for any b := (bd−s−1, . . . , b1) ∈ Fd−s−1q , we denote

fb := T d + ad−1T
d−1 + · · ·+ ad−sT

d−s + bd−s−1T
d−s−1 + · · ·+ b1T.

We wish to estimate the sum

(6.1) V2(d, s,a) :=
1

qd−s−1

∑
b∈Fd−s−1

q

V(fb)
2.
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We start with the following result, which plays a similar role to Theorem 3.1
in estimating V(d, s,a).

Theorem 6.1. Under the assumptions above,

V2(d, s,a) = V(d, s,a) +
∑

1≤m,n≤d
2≤m+n≤d−s

(−1)m+n

(
q

m

)(
q

n

)
q2−n−m

+
1

qd−s−1

∑
1≤m,n≤d

d−s+1≤m+n≤2d

(−1)m+n
∑

Γ1,Γ2⊂Fq
|Γ1|=m, |Γ2|=n

|SaΓ1,Γ2
|,

where SaΓ1,Γ2
is the set of points (b, b0,1, b0,2) ∈ Fd−s+1

q with b0,1 6= b0,2 such
that (fb + b0,1)|Γ1 ≡ 0 and (fb + b0,2)|Γ2 ≡ 0.

Proof. Fix b ∈ Fd−s−1q . Let Fq[T ]d denote the set of polynomials in Fq[T ]
of degree at most d, let N : Fq[T ]d → Z≥0 be the counting function of the
number of roots in Fq and let 1{N>0} : Fq[T ]d → {0, 1} be the characteristic
function of the set of elements of Fq[T ]d having at least one root in Fq. Taking
into account that V(fb) =

∑
b0∈Fq 1{N>0}(fb + b0), we obtain

qd−s−1V2(d, s,a)

=
∑

b∈Fd−s−1
q

( ∑
b0,1∈Fq

1{N>0}(fb + b0,1)
)( ∑

b0,2∈Fq

1{N>0}(fb + b0,2)
)
.

For (b, b0,1, b0,2) ∈ Fd−s+1
q , we denote fb1 := fb + b0,1 and fb2 := fb + b0,2.

We have

(6.2) qd−s−1V2(d, s,a) =
∑

b∈Fd−s−1
q

∑
(b0,1,b0,2)∈F2q

1{N>0}2(fb1 , fb2)

=
∑

b∈Fd−s−1
q

∑
(b0,1,b0,2)∈F2q
b0,1=b0,2

1{N>0}2(fb1 , fb2)+
∑

b∈Fd−s−1
q

∑
(b0,1,b0,2)∈F2q
b0,1 6=b0,2

1{N>0}2(fb1 , fb2).

For the first term on the right-hand side of (6.2), we have

(6.3) ∑
(b,b0,1,b0,2)∈Fd−s+1

q

b0,1=b0,2

1{N>0}2(fb1 , fb2) =
∑

b1∈Fd−sq

1{N>0}(fb1) = qd−s−1V(d, s,a).

Next we express the second term on the right-hand side of (6.2) in terms of
the sets

Sa{α},{β} := {(b, b0,1, b0,2) ∈ Fd−s+1
q : b0,1 6= b0,2, fb1(α) = fb2(β) = 0}
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with α, β ∈ Fq. We have∑
(b,b0,1,b0,2)∈Fd−s+1

q

b0,1 6=b0,2

1{N>0}2(fb1 , fb2) =
∣∣∣ ⋃
{α,β}⊆Fq
α 6=β

Sa{α},{β}
∣∣∣ =

∣∣∣ ⋃
α∈Fq

⋃
β∈Fq
α 6=β

Sa{α},{β}
∣∣∣.

Let T aα :=
⋃
β∈Fq S

a
{α},{β}. By the inclusion-exclusion principle we obtain∣∣∣ ⋃

α∈Fq

⋃
β∈Fq

Sa{α},{β}
∣∣∣ =

q∑
m=1

(−1)m−1
∑

{α1,...,αm}⊂Fq

|T aα1
∩ · · · ∩ Taαm |

=

q∑
m=1

(−1)m−1
∑

{α1,...,αm}⊂Fq

∣∣∣ ⋃
β∈Fq

Sa{α1,...,αm},{β}

∣∣∣
=

q∑
m=1
n=1

(−1)m+n
∑

{α1,...,αm}⊂Fq
{β1,...,βn}⊂Fq

|Sa{α1,...,αm},{β1,...,βn}|

=

q∑
m=1
n=1

(−1)m+n
∑

Γ1,Γ2⊆Fq
|Γ1|=m, |Γ2|=n

|SaΓ1,Γ2
|.

If Γ1 ∩ Γ2 6= ∅, then SaΓ1,Γ2
= ∅, while SaΓ1,Γ2

= ∅ for m > d or n > d. We
conclude that∑
(b,b0,1,b0,2)∈Fd−s+1

q

b0,1 6=b0,2

1{N>0}2(fb1 , fb2) =
∑

1≤m,n≤d
(−1)m+n

∑
Γ1,Γ2⊆Fq

|Γ1|=m, |Γ2|=n
Γ1∩Γ2=∅

|SaΓ1,Γ2
|.

Fix n, m ∈ N and fix subsets Γ1 = {α1, . . . , αm} ⊂ Fq and Γ2 =
{β1, . . . , βn} ⊂ Fq with Γ1 ∩Γ2 = ∅. If (b, b0,1, b0,2) ∈ SaΓ1,Γ2

, then b0,1 6= b0,2,
fb1 |Γ1 ≡ 0 and fb2 |Γ2 ≡ 0. These two identities can be expressed in matrix
form as follows:

(6.4) M(Γ1, Γ2) · v = −fa(Γ1, Γ2)

where vt := (b, b0,1, b0,2) ∈ Fd−s+1
q , and M(Γ1, Γ2) ∈ F(m+n)×(d−s+1)

q and

fa(Γ1, Γ2) ∈ F(m+n)×1
q are the following matrices:

M(Γ1, Γ2) :=



αd−s−11 · · · α1 1 0
...

...
...

...

αd−s−1m · · · αm 1 0

βd−s−11 · · · β1 0 1
...

...
...

...

βd−s−1n · · · βn 0 1


, fa(Γ1, Γ2) :=



−fa(α1)
...

−fa(αm)

−fa(β1)
...

−fa(βn)


.
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It follows that (b, b0,1, b0,2) ∈ SaΓ1,Γ2
if and only if (b, b0,1, b0,2) is a solution

of (6.4).

For m+n < d− s+ 1, the rank of M(Γ1, Γ2) is m+n, and the set SaΓ1,Γ2

of solutions is a linear Fq-variety of dimension d− s+ 1−m−n. From (6.4)
we conclude that

|SaΓ1,Γ2
| = qd−s+1−m−n.

This implies∑
(b,b0,1,b0,2)∈Fd−s+1

q

b0,1 6=b0,2

1{N>0}2(fb1 , fb2) =
∑

1≤m,n≤d
2≤m+n≤d−s

(−1)m+nqd−s+1−m−n
(
q

m

)(
q

n

)

+
∑

1≤m,n≤d
d−s+1≤m+n≤2d

(−1)m+n
∑

Γ1, Γ2⊆Fq
|Γ1|=m, |Γ2|=n

Γ1∩Γ2=∅

|SaΓ1,Γ2
|.

Combining this with (6.3) yields the statement of the theorem.

Fix s, d and a as in the statement of Theorem 6.1. According to Theo-
rem 6.1, to determine the behavior of V2(d, s,a) we have to estimate

(6.5) Sam,n :=
∑

Γ1, Γ2⊂Fq
|Γ1|=m, |Γ2|=n

|SaΓ1, Γ2
|

for each pair (m,n) with 1 ≤ m,n ≤ d and d− s+ 1 ≤ m+ n ≤ 2d.

7. A geometric approach to estimating Sam,n. Fix m and n with
1 ≤ m,n ≤ d and d − s + 1 ≤ m + n ≤ 2d. To estimate Sam,n, we in-
troduce new indeterminates T, T1, . . . , Tm, U,U1, . . . , Un, B,Bd−s−1, . . . , B1,
B0,1, B0,2 over Fq and denote T := (T1, . . . , Tm), U := (U1, . . . , Un), B :=
(Bd−s−1, . . . , B1), B1 := (B, B0,1) and B2 := (B, B0,2). Furthermore, we
consider the polynomial F ∈ Fq[B, B, T ] defined as follows:

(7.1) F := T d +

d−1∑
i=d−s

aiT
i
j +

d−s−1∑
i=1

BiT
i +B.

If (b, b0,1, b0,2,α,β) ∈ Fd−s+1+m+n
q , then we have F (b, b0,1, αj) = fb1(αj)

and F (b, b0,2, βk) = fb2(βk) for 1 ≤ j ≤ m and 1 ≤ k ≤ n. Let Γm,n ⊂
Ad−s+1+m+n be the affine quasi-Fq-variety defined as

Γm,n := {(b, b0,1, b0,2,α,β) ∈ Ad−s+1+m+n : F (b, b0,1, αj) = 0 (1 ≤ j ≤ m),

αi 6= αj (i 6=j), F (b, b0,2, βk) = 0 (1 ≤ k ≤ n), βi 6= βj (i 6= j), b0,1 6= b0,2}.

Similarly to Lemma 3.2, we have the following result.
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Lemma 7.1. Let m and n be integers with 1 ≤ m,n ≤ d and d− s+ 1 ≤
m+ n ≤ 2d. Then

|Γm,n(Fq)|
m!n!

= Sam,n.

Proof. Let (b, b0,1, b0,2,α,β) ∈ Γm,n(Fq) and let

σ : {1, . . . ,m} → {1, . . . ,m} and τ : {1, . . . , n} → {1, . . . , n}
be any permutations. Let σ(α) and τ(β) be the images of α and β under
the linear mappings induced by these permutations. Then it is clear that
(b, b0,1, b0,2, σ(α), τ(β)) ∈ Γm,n(Fq). Furthermore, σ(α) = α if and only if
σ is the identity permutation, and similarly for τ(β). This shows that the
product Sm×Sn of symmetric groups acts on Γm,n(Fq) and each orbit of this
action has m!n! elements.

The orbit of an arbitrary point (b, b0,1, b0,2,α,β) uniquely determines
polynomials fb1 and fb2 and sets Γ1 := {α1, . . . , αm} ⊂ Fq and Γ2 :=
{β1, . . . , βn} ⊂ Fq with |Γ1| = m and |Γ2| = n such that fb1 |Γ1 ≡ 0 and
fb2 |Γ2 ≡ 0. Therefore, each orbit uniquely determines sets Γ1, Γ2 ⊂ Fq with
|Γ1| = m and |Γ2| = n and an element of SaΓ1, Γ2

. Conversely, to each ele-
ment of SaΓ1,Γ2

there corresponds a unique orbit of Γm,n(Fq). This implies
that

number of orbits of Γm,n(Fq) =
∑

Γ1, Γ2⊂Fq
|Γ1|=m, |Γ2|=n

|SaΓ1,Γ2
|,

finishing the proof.

To estimate |Γm,n(Fq)| we shall consider the Zariski closure cl(Γm,n) in
Ad−s+1+m+n. Our aim is to provide explicit equations defining cl(Γm,n). Let
Γ ∗m,n ⊂ Ad−s+1+m+n be the affine Fq-variety defined as

Γ ∗m,n := {(b, b0,1, b0,2,α,β) ∈ Ad−s+1+m+n : ∆i−1F (b, b0,1, α1, . . . , αi) = 0

(1 ≤ i ≤ m), ∆j−1F (b, b0,2, β1, . . . , βj) = 0 (1 ≤ j ≤ n)},
where ∆i−1F (b, b0,1, T1, . . . , Ti) and ∆j−1F (b, b0,2, U1, . . . , Uj) denote the
corresponding divided differences of F (b, b0,1, T ) ∈ Fq[T ] and F (b, b0,2, U)
∈ Fq[U ] respectively. The following relation between the varieties Γm,n and
Γ ∗m,n is an easy consequence of Lemma 3.3.

Lemma 7.2. With the notations above,

(7.2)
Γm,n = Γ ∗m,n∩{αi 6= αj (1≤ i<j ≤ m), βi 6= βj (1≤ i<j ≤ n), b0,1 6= b0,2}.

8. Geometry of Γ ∗m,n. Let 1 ≤ m,n ≤ d and d− s+ 1 ≤ m+ n ≤ 2d.
In this section we obtain critical information on the geometry of Γ ∗m,n, from
which we conclude that Γ ∗m,n is the Zariski closure of Γm,n.
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Several arguments in this section are similar to those of Section 4. There-
fore, to avoid repetition, some proofs will only be sketched.

Lemma 8.1. The variety Γ ∗m,n is a set-theoretic complete intersection of
dimension d− s+ 1.

Proof. Consider the graded lexicographic order of Fq[B, B0,1, B0,2,T ,U ]
with Un > · · · > U1 > Tm > · · · > T1 > Bd−s−1 > · · · > B0,1

> B0,2. Arguing as in Lemma 4.1 it is easy to see that the leading terms

of ∆i−1F (B1, T1, . . . , Ti) and ∆j−1F (B2, U1, . . . , Uj) are T d−i+1
i and Ud−j+1

j

respectively. This shows that ∆i−1F (B1, T1, . . . , Ti) (1 ≤ i ≤ m) and
∆j−1F (B2, U1, . . . , Uj) (1 ≤ j ≤ n) form a Gröbner basis of the ideal
Jm,n they generate (see, e.g., [CLO92, §2.9, Proposition 4]). Further-
more, since the leading terms of ∆i−1F (B1, T1, . . . , Ti) (1 ≤ i ≤ m)
and ∆j−1F (B2, U1, . . . , Uj) (1 ≤ j ≤ n) form a regular sequence in
Fq[B, B0,1, B0,2,T ,U ], by [Eis95, Proposition 15.15] we conclude that
∆i−1F (B1, T1, . . . , Ti) (1 ≤ i ≤ m) and ∆j−1F (B2, U1, . . . , Uj) (1 ≤ j ≤ n)
also form a regular sequence. Then Γ ∗m,n is a set-theoretic complete inter-
section of dimension d− s+ 1.

8.1. The singular locus of Γ ∗m,n. The aim of this section is to prove
that the singular locus of Γ ∗m,n has codimension at least 2 in Γ ∗m,n.

Arguing as in the proof of Lemma 4.2 it is easy to see that the polyno-
mials F (B1, Ti) (1 ≤ i ≤ m) and F (B2, Uj) (1 ≤ j ≤ n) vanish on Γ ∗m,n.
Hence, we have the following criterion of nonsingularity.

Remark 8.2. Let JF1,2 be the Jacobian matrix of the polynomials
F (B1, Ti) (1 ≤ i ≤ m) and F (B2, Uj) (1 ≤ j ≤ n) with respect to
B, B0,1, B0,2,T ,U . If the point (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n is such that
rank JF1,2(b, b0,1, b0,2,α,β) = m+ n, then it is nonsingular.

Let (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n, and denote α := (α1, . . . , αm) and β :=
(β1, . . . , βn). Set b1 := (b, b0,1) and b2 := (b, b0,2). Then the Jacobian matrix
JF1,2(b, b0,1, b0,2,α,β) has the expression

(8.1)

JF1,2(b, b0,1, b0,2,α,β) =



αd−s−11 · · · α1 1 0 γ1 · · · 0 0 · · · 0
...

...
...

...
...

. . .
...

...
...

αd−s−1m · · · αm 1 0 0 · · · γm 0 · · · 0

βd−s−11 · · · β1 0 1 0 · · · 0 η1 · · · 0
...

...
...

...
...

...
...

. . .
...

βd−s−1n · · · βn 0 1 0 · · · 0 0 · · · ηn


,



Value set of small families II 165

where γi := f ′b(αi) and ηj := f ′b(βj) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Therefore,
from Remark 8.2 we immediately deduce the following remark.

Remark 8.3. If there exist at most one αi and at most one βj which
are multiple roots of fb1 and fb2 respectively, then (b, b0,1, b0,2,α,β) is a
nonsingular point of Γ ∗m,n.

Consider the following morphism of Fq-varieties:

(8.2) Ψm,n : Γ ∗m,n → Ad−s+1, (b, b0,1, b0,2,α,β) 7→ (b, b0,1, b0,2).

As in the proof of Lemma 4.3, we easily deduce that Ψm,n is a finite mor-
phism.

Let (b, b0,1, b0,2,α,β) be a singular point of Γ ∗m,n. According to Re-
mark 8.3, either fb1 or fb2 has multiple roots. We now observe that we may
assume without loss of generality that f ′b 6= 0 and ∆2F (b1, T, T, T ) 6= 0.
More precisely, from the proofs of Lemmas 4.3 and 4.7 we deduce the fol-
lowing remark.

Remark 8.4. If d−s ≥ 3, then the setW ′1 of points (b, b0,1, b0,2,α,β) of
Γ ∗m,n such that f ′b = 0 or ∆2F (b1, T, T, T ) = 0 is contained in a subvariety
of Γ ∗m,n of codimension 2.

Next we study the set of singular points of Γ ∗m,n for which f ′b 6= 0. We

first consider the case where fb1 and fb2 have multiple roots in Fq.
Lemma 8.5. Let W ′ ⊂ Γ ∗m,n be the set of points (b, b0,1, b0,2,α,β) such

that f ′b 6= 0 and fb1 and fb2 have multiple roots in Fq. Then W ′ is contained
in a codimension-2 subvariety of Γ ∗m,n.

Proof. Let (b, b0,1, b0,2,α,β)∈W ′. Then Res(fb1 , f
′
b1

) = Res(fb2 , f
′
b2

) = 0,

where Res denotes resultant. Since fb1 and fb2 have degree d and f ′b1 and
f ′b2 are nonzero polynomials, it follows that

Res(fb1 , f
′
b1) = Res

(
F (B1, T1), ∆

1F (B1, T1, T1), T1
)∣∣
B1=b1

,

Res(fb2 , f
′
b2) = Res

(
F (B2, U1), ∆

1F (B2, U1, U1), U1

)∣∣
B2=b2

.

Here R1 := Res(F (B1, T1), ∆
1F (B1, T1, T1), T1) is the resultant of the poly-

nomials F (B1, T1) and ∆1F (B1, T1, T1) with respect to T1, and R2 :=
Res(F (B2, U1), ∆

1F (B2, U1, U1), U1) is the resultant of F (B2, U1) and
∆1F (B2, U1, U1) with respect to U1. Then W ′ ⊂ Ψ−1m,n(Z), where Ψm,n is

the morphism (8.2) and Z is the subvariety of Ad−s+1 defined by

R1(B1) = 0, R2(B2) = 0.

Since F (B1, T1) is a separable element of Fq[B1][T1], the resultant R1 is
nonzero element of Fq[B1]. Furthermore, from, e.g., [FS84, §1], one deduces
thatR1 ∈ Fq[B][B0,1]\Fq[B]. Analogously,R2 is a nonconstant polynomial of
Fq[B][B0,2]. According to Theorem A.3 (see Appendix), R1 is an irreducible



166 G. Matera et al.

element of Fq[B][B0,1, B0,2] and R2 ∈ Fq[B][B0,1, B0,2] is not a multiple of
R1(B1) in Fq[B][B0,1, B0,2]. This implies that R1(B1) and R2(B2) form a
regular sequence in Fq[B, B0,1, B0,2]. It follows that Z has dimension d−s−1,
and hence dimΨ−1m,n(Z) = d− s− 1. This finishes the proof.

According to Lemma 8.5, it remains to analyze the set of singular points
(b, b0,1, b0,2,α,β) of Γ ∗m,n for which either fb1 or fb2 has only simple roots

in Fq. In what follows we shall assume that the latter holds. By Remark 8.3
there must be at least two distinct coordinates of α which are multiple roots
of fb1 .

Suppose first that there exist two coordinates of α which are distinct
multiple roots of fb1 . Arguing as in Lemma 4.5 we easily deduce the following
remark.

Remark 8.6. Let W ′2 denote the set of points (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n
for which:

• fb2 has only simple roots in Fq,
• there exist 1 ≤ i < j ≤ m such that αi 6= αj and αi, αj are multiple

roots of fb1 .

Then W ′2 is contained in a subvariety of codimension 2 of Γ ∗m,n.

Next we consider the points of Γ ∗m,n for which there exist exactly two
distinct coordinates of α whose common value is a multiple root of fb1 .
Arguing as in Lemma 4.6 we obtain the following remark.

Remark 8.7. Let (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n satisfy:

• fb2 has only simple roots in Fq,
• there exist 1 ≤ i < j ≤ m such that αi = αj and αi is a multiple root

of fb1 ,
• for any k /∈ {i, j}, αk is a simple root of fb1 .

Then (b, b0,1, b0,2,α,β) is a regular point of Γ ∗m,n.

Finally, we analyze the set of points of Γ ∗m,n such that there exist three
distinct coordinates of α with value the same multiple root of fb1 . By
Lemma 4.7 we deduce the following remark.

Remark 8.8. Let W ′3 be the set of points (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n for

which fb2 has only simple roots in Fq and there exist 1 ≤ i < j < k ≤ m
such that αi = αj = αk and αi is a multiple root of fb1 . If d − s ≥ 3, then
W ′3 is contained in a codimension-2 subvariety of Γ ∗m,n.

Now we are able to obtain our lower bound on the codimension of the
singular locus of Γ ∗m,n. Remarks 8.3, 8.4, 8.6, 8.7 and 8.8 and Lemma 8.5
show that the set of singular points of Γ ∗m,n is contained in the union ofW ′1,
W ′, W ′2 and W ′3 defined in the remarks and the lemma. Since that union
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is contained in a codimension-2 subvariety of Γ ∗m,n, we obtain the following
result.

Theorem 8.9. Let p > 2 and q > d. If d−s ≥ 3, then the singular locus
of Γ ∗m,n has codimension at least 2 in Γ ∗m,n.

We finish this section with a consequence of the analysis underlying
the proof of Theorem 8.9. As the proof of this result is similar to that of
Corollary 4.9, it will only be sketched.

Corollary 8.10. Under the assumptions of Theorem 8.9, the ideal
Jm,n⊂Fq[B, B0,1, B0,2,T ,U ] generated by ∆i−1F (B1, T1, . . . , Ti) (1≤ i≤m)
and ∆j−1F (B2, U1, . . . , Uj) (1 ≤ j ≤ n) is radical.

Proof. By Lemma 8.1, the polynomials∆i−1F (B1, T1, . . . , Ti) (1≤ i≤m)
and ∆j−1F (B2, U1, . . . , Uj) (1 ≤ j ≤ n) form a regular sequence. Let J∆1,2

be their Jacobian matrix with respect to B, B0,1, B0,2,T ,U . We claim that
the set of points (b, b0,1, b0,2,α,β) ∈ Γ ∗m,n for which J∆1,2(b, b0,1, b0,2,α,β)
does not have full rank has codimension at least 1 in Γ ∗m,n. Indeed, if
J∆1,2(b, b0,1, b0,2,α,β) does not have full rank, then neither does the ma-
trix JF1,2(b, b0,1, b0,2,α,β) of (8.1). On the other hand, the latter implies

that fb1 or fb2 has multiple roots in Fq. Therefore, by the arguments of
the proofs of Remark 8.4 and Lemma 8.5 we deduce the claim. By [Eis95,
Theorem 18.15], the statement of the corollary follows.

8.2. The geometry of the projective closure of Γ ∗m,n. Similarly to
Section 4.2, in this section we discuss the behavior of Γ ∗m,n at infinity. For this

purpose, we shall consider the projective closure pcl(Γ ∗m,n) ⊂ Pd−s+1+m+n,
and the set of point of pcl(Γ ∗m,n) at infinity, i.e., lying in the hyperplane
{T0 = 0}.

Let J hm,n ⊂ Fq[B, B0,1, B0,2, T0,T ,U ] be the ideal generated by the ho-

mogenizations F h of all F ∈ Jm,n.

Lemma 8.11. Under the assumptions of Theorem 8.9, the homogenized
polynomials ∆i−1F (B1, T1, . . . , Ti)

h (1≤ i≤m) and ∆j−1F (B2, U1, . . . , Uj)
h

(1 ≤ j ≤ n) generate the ideal J hm,n. Furthermore, pcl(Γ ∗m,n) is an
ideal-theoretic complete intersection of dimension d − s + 1 and degree
(d!)2/((d−m)!(d− n)!).

Proof. The proof repeats mutatis mutandis the proof of Lemma 4.10,
considering the graded lexicographical order of Fq[B, B0,1, B0,2,T ,U ] de-
fined by Un> · · ·>U1>Tm> · · ·>T1>Bd−s−1> · · ·>B1>B0,1>B0,2.

Similarly to Lemma 4.11, the set of points of pcl(Γ ∗m,n) at infinity is a
linear variety. We shall skip the proof of this result, because it is similar to
that of Lemma 4.11.
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Lemma 8.12. pcl(Γ ∗m,n)∩{T0 = 0} ⊂ Pd−s+m+n is a linear Fq-variety of
dimension d− s.

Combining Theorem 8.9 and Lemmas 8.11 and 8.12, as in the proof of
Theorem 4.12, we obtain the main result of this section.

Theorem 8.13. Under the assumptions of Theorem 8.9, the projective
variety pcl(Γ ∗m,n) ⊂ Pd−s+1+m+n is a normal absolutely irreducible ideal-
theoretic complete intersection defined over Fq of dimension d − s + 1 and
degree (d!)2/((d−m)!(d− n)!).

We deduce that Γ ∗m,n ⊂ Ad−s+1+m+n is an absolutely irreducible ideal-
theoretic complete intersection of dimension d − s + 1 and degree
(d!)2/((d − m)!(d − n)!). Lemma 7.2 shows that Γm,n coincides with the
subset of points of Γ ∗m,n with b0,1 6= b0,2, αi 6= αj and βk 6= βl. Hence, by
the absolute irreducibility of Γ ∗m,n we deduce that cl(Γm,n) = Γ ∗m,n.

9. The asymptotic behavior of V2(d, s,a). As before, let p > 2 and
let d and s be positive integers such that q > d and d− s ≥ 3. As mentioned
before, our objective is to determine the asymptotic behavior of the quantity
V2(d, s,a) of (6.1) for a given a := (ad−1, . . . , ad−s) ∈ Fsq . According to
Theorem 6.1, this behavior is determined by that of the number Sam,n defined
in (6.5) for all pairs (m,n) with 1 ≤ m,n ≤ d and d− s+ 1 ≤ m+ n ≤ 2d.

9.1. An estimate for Sam,n. Lemma 7.1 expresses Sam,n in terms of the
number |Γm,n(Fq)| of q-rational points of the affine quasi-Fq-variety Γm,n.
Therefore, we estimate |Γm,n(Fq)| for each pair (m,n) as above.

Lemma 7.2 relates |Γm,n(Fq)| to the number |Γ ∗m,n(Fq)| of q-rational points
of the affine Fq-variety Γ ∗m,n. We shall express the latter in terms of the
number of q-rational points of the projective closure pcl(Γ ∗m,n) and its set
pcl(Γ ∗m,n)∞ := pcl(Γ ∗m,n) ∩ {T0 = 0} of points at infinity.

Theorem 8.13 shows that pcl(Γ ∗m,n) is a normal ideal-theoretic complete
intersection of dimension d− s+ 1 defined over Fq, and thus (5.1) yields∣∣|pcl(Γ ∗m,n)(Fq)|−pd−s+1

∣∣ ≤ (δm,n(Dm,n−2)+2
)
qd−s+1/2+14D2

m,nδ
2
m,nq

d−s,

where Dm,n :=
∑m

i=1(d−i)+
∑n

j=1(d−j) = (m+n)d−(m(m+1)+n(n+1))/2

and δm,n := (d!)2/((d−m)!(d−n)!). On the other hand, Lemma 8.12 proves
that pcl(Γ ∗m,n)∞ is a linear Fq-variety of dimension d− s. Thus we obtain

∣∣|Γ ∗m,n(Fq)| − qd−s+1
∣∣ =

∣∣|pcl(Γ ∗m,n)| − |pcl(Γ ∗m,n)∞| − pd−s+1 + pd−s
∣∣(9.1)

≤ (δm,n(Dm,n − 2) + 2)qd−s+1/2 + 14D2
m,nδ

2
m,nq

d−s.

Next we estimate |Γm,n(Fq)|. To this end, according to Lemma 7.2 we
obtain an upper bound on the number of q-rational points (b, b0,1, b0,2,α,β)
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of Γ ∗m,n such that either b0,1 = b0,2, or there exist 1 ≤ i < j ≤ m with
αi = αj , or there exist 1 ≤ k < l ≤ n with βk = βl. This subset of Γ ∗m,n is
the following Fq-variety:

Γ ∗,=m,n := Γ ∗m,n ∩
(
{B0,1 = B0,2} ∪

⋃
1≤i<j≤m

{Ti = Tj} ∪
⋃

1≤k<l≤n
{Uk = Ul}

)
.

Observe that Γ ∗,=m,n = Γ ∗m,n ∩ Hm,n, where Hm,n ⊂ Ad−s+1+m+n is the hy-
persurface defined by the polynomial

F := (B0,1 −B0,2)
∏

1≤i<j≤m
(Ti − Tj)

∏
1≤k<l≤n

(Uk − Ul).

By the Bézout inequality (2.1) we have

(9.2) degΓ ∗,=m,n ≤ δm,n
((

m

2

)
+

(
n

2

)
+ 1

)
,

The set Γ ∗m,n ∩ {B0,1 = B0,2} is contained in the codimension-1 subvariety

of Γ ∗m,n given by Ψ−1m,n({B0,1 = B0,2}). Furthermore, if αi = αj for 1 ≤ i <
j ≤ m, then αi is a multiple root of fb1 , and similarly for fb2 if βk = βl for
1 ≤ k < l ≤ m. Then, by Remark 8.4 and Lemma 8.5, Γ ∗,=m,n has dimension
at most d− s. Therefore, combining, e.g., [CM06, Lemma 2.1] with (9.2) we
obtain

(9.3)
∣∣Γ ∗,=m,n (Fq)

∣∣ ≤ δm,n((m
2

)
+

(
n

2

)
+ 1

)
qd−s.

Since Γm,n(Fq) = (Γ ∗m,n)(Fq) \ (Γ ∗,=m,n )(Fq), from (9.1) and (9.3) we see that

(9.4)
∣∣|Γm,n(Fq)| − qd−s+1

∣∣ ≤ ∣∣|Γ ∗m,n(Fq)| − qd−s+1
∣∣+ |(Γ ∗,=m,n )(Fq)|

≤ (δm,n(Dm,n − 2) + 2)qd−s+1/2 + (14D2
m,nδ

2
m,n + ξm,nδm,n)qd−s,

where ξm,n :=
(
m
2

)
+
(
n
2

)
+ 1.

Finally, by Lemma 7.1 and (9.4) we obtain the following result.

Theorem 9.1. Let p > 2 and let d and s satisfy q > d and d − s ≥ 3.
For each (m,n) with 1 ≤ m,n ≤ d, and d− s+ 1 ≤ m+ n ≤ 2d, we have∣∣∣∣Sam,n − qd−s+1

m!n!

∣∣∣∣ ≤ 1

m!n!

(
δm,n(Dm,n − 2) + 2

)
qd−s+1/2

+
1

m!n!
(14D2

m,nδ
2
m,n + ξm,nδm,n)qd−s,

where ξm,n :=
(
m
2

)
+
(
n
2

)
+ 1, Dm,n := (m+n)d−

(
m+1
2

)
−
(
n+1
2

)
and δm,n :=

(d!)2/((d−m)!(d− n)!).

9.2. The asymptotic behavior of V2(d, s,a). Theorem 9.1 is the
fundamental step towards the determination of the asymptotic behavior of
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V2(d, s,a). Indeed, by Theorem 6.1 we have

(9.5) V2(d, s,a)− µ2dq2

= V(d, s,a) +
∑

1≤m,n≤d
2≤m+n≤d−s

(−q)2−m−n
((

q

n

)(
q

m

)
− qm+n

m!n!

)

+
1

qd−s−1

∑
1≤m,n≤d

d−s+1≤m+n≤2d

(−1)m+n

(
Sam,n −

qd−s+1

m!n!

)
.

From Corollary 5.2 it follows that

(9.6) V(d, s,a) ≤ µdq + d22d−1q1/2 +
7

2
d4

s−1∑
k=0

(
d

k

)2

(d− k)!.

Next we obtain an upper bound for the absolute value A1(d, s) of the
second term on the right-hand side of (9.5). Indeed, taking into account that(

q

n

)(
q

m

)
− qm+n

m!n!
=

(
q

m

)((
q

n

)
− qn

n!

)
+
qn

n!

((
q

m

)
− qm

m!

)
,

we see that

A1(d, s) ≤
∣∣∣∣ ∑

1≤m,n≤d
2≤m+n≤d−s

(−q)2−m−n
(
q

m

)((
q

n

)
− qn

n!

)∣∣∣∣
+

∣∣∣∣ ∑
1≤m,n≤d

2≤m+n≤d−s

(−1)n

n!
(−q)2−m

((
q

m

)
− qm

m!

)∣∣∣∣.
Arguing as in the proof of [C–P14, Corollary 14], we have∣∣∣∣ d−s−m∑

n=1

(−q)1−n
((

q

n

)
− qn

n!

)∣∣∣∣ ≤ 1

2e
+

1

2
+

7

q
≤ d.

Therefore,∣∣∣∣ ∑
1≤m,n≤d

2≤m+n≤d−s

(−q)1−m−n
(
q

m

)((
q

n

)
− qn

n!

)∣∣∣∣
≤ d

d−s−1∑
m=1

(
q

m

)
q−m ≤ d

(
1 +

1

q

)q
≤ ed.

On the other hand,∣∣∣∣ ∑
1≤m,n≤d

2≤m+n≤d−s

(−1)n

n!
(−q)1−m

((
q

m

)
− qm

m!

)∣∣∣∣ ≤ d d−s−1∑
n=1

1

n!
≤ ed.

Combining the above two bounds we obtain A1(d, s) ≤ 2edq.



Value set of small families II 171

Finally, we consider the absolute value B1(d, s) of the last term of (9.5).
We have

B1(d, s) ≤
d∑

m,n=1

δm,n(Dm,n − 2) + 2

m!n!
q3/2(9.7)

+ 14
d∑

m,n=1

D2
m,nδ

2
m,n

m!n!
q +

d∑
m,n=1

ξm,nδm,n
m!n!

q.

First we obtain an upper bound for the first term on the right-hand side:

d∑
m,n=1

δm,n(Dm,n − 2) + 2

m!n!
≤ 2

d∑
n=1

(
d

n

)
n(2d− n− 1)

2

d∑
m=1

(
d

m

)
(9.8)

≤ d22d(2d − 1).

Next, since D2
m,n ≤ (2d− 1)4/16 for 1 ≤ m,n ≤ d, we see that

d∑
m,n=1

D2
m,nδ

2
m,n

m!n!
≤ 1

16
(2d− 1)4

( d∑
n=1

(
d

n

)2

n!

)2

(9.9)

≤ 1

16
(2d− 1)4

( d−1∑
k=0

(
d

k

)2

(d− k)!

)2

.

Finally, we consider the last term of (9.7):

d∑
m,n=1

δm,n ξm,n
m!n!

≤ 2

d∑
n=1

(
d

n

) d∑
m=1

(
d

m

)(
m

2

)
+

d∑
n=1

(
d

n

) d∑
m=1

(
d

m

)
(9.10)

≤ d2 2d−2(2d − 1).

Putting together (9.8)–(9.10), we obtain

B1(d, s) ≤ d2 2d−2(2d − 1)(4q3/2 + q) +
7

8
(2d− 1)4

( d−1∑
k=0

(
d

k

)2

(d− k)!

)2

q.

Combining (9.6) and the upper bounds for A1(d, s) and B1(d, s), we
deduce the following result.

Corollary 9.2. Under the assumptions of Theorem 9.1,

(9.11) |V2(d, s,a)− µ2dq2| ≤ d222d+1q3/2 + 14d4
( d−1∑
k=0

(
d

k

)2

(d− k)!

)2

q.

We finish this section with a brief analysis of the behavior of the right-
hand side of (9.11). The analysis is similar to that of Section 5.3, and will
be only briefly sketched.
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Fix k with 0 ≤ k ≤ d − 1 and denote h(k) :=
(
d
k

)
2(d − k)!. Similarly

to Remark 5.3, h is a unimodal function in the integer interval [0, d − 1]
which reaches its maximum at bk0c, where k0 := −1/2 +

√
5 + 4d/2. As a

consequence,
d−1∑
k=0

(
d

k

)2

(d− k)! ≤ d
(

d

bk0c

)2

(d− bk0c)! =
d (d!)2

(d− bk0c)! (bk0c!)2
.

With a similar analysis to Section 5.3, we conclude that( d−1∑
k=0

(
d

k

)2

(d− k)!

)2

≤ 8 · 142d2d+2e4
√
d−2d.

Hence, we obtain the following result.

Theorem 9.3. Let p > 2, q > d and 1 ≤ s ≤ d− 3. Then

|V2(d, s,a)− µ2dq2| ≤ d2 22d+1q3/2 + 283d2d+6e4
√
d−2dq.

10. On the second moment for s = 0. As before, let p > 2 and let
d be a positive integer with d < q. In this section by a similar analysis to
the one underlying Sections 6–9 we establish the asymptotic behavior of the
quantity

V2(d, 0) :=
1

qd−1

∑
b∈Fd−1

q

V(fb)
2,

the average second moment of V(fb) when fb := T d + bd−1T
d−1 + · · ·+ b1T

ranges over all monic polynomials in Fq[T ] of degree d with fb(0) = 0. As
stated in the introduction, an explicit expression for V2(d, 0) is obtained
for d ≥ q in [KK90]. On the other hand, in [U56] it is shown that, for
p := char(Fq) > d and assuming the Riemann hypothesis for L-functions,
one has V2(d, 0) = µ2dq

2 +O(q). Observe that no explicit expression for the
O-constant is provided in [U56].

A similar argument to the proof of Theorem 6.1 yields the following
result.

Theorem 10.1. Under the assumptions and notations above, we have

V2(d, 0) = V(d, 0) +
∑

1≤m,n≤d
2≤m+n≤d

(
q

m

)(
q

n

)
(−q)2−n−m

+
1

qd−1

∑
1≤m,n≤d

d+1≤m+n≤2d

(−1)m+n
∑

Γ1,Γ2⊂Fq
|Γ1|=m, |Γ2|=n

|SΓ1,Γ2 |,

where SΓ1,Γ2 is the set of points (b, b0,1, b0,2) ∈ Fd+1
q with b0,1 6= b0,2 such

that (fb + b0,1)|Γ1 ≡ 0 and (fb + b0,2)|Γ2 ≡ 0.
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In view of Theorem 10.1, we fix m and n with 1 ≤ m,n ≤ d and d+ 1 ≤
m+ n ≤ 2d and consider the sum

Sm,n :=
∑

Γ1, Γ2⊂Fq
|Γ1|=m, |Γ2|=n

|SΓ1, Γ2 |.

In order to find an estimate for Sm,n we introduce new indeterminates
T, T1, . . . , Tm, U,U1, . . . , Un, B,Bd−1, . . . , B1, B0,1, B0,2 over Fq and de-
note B := (Bd−1, . . . , B1). Furthermore, we consider the polynomial F :=

T d +
∑d−1

i=1 BiT
i +B ∈ Fq[B, B, T ] and the affine Fq-variety

Γ 0
m,n := {(b, b0,1, b0,2,α,β) ∈ Ad+1+m+n : ∆i−1F (b, b0,1, α1, . . . , αi) = 0

(1 ≤ i ≤ m), ∆j−1F (b, b0,2, β1, . . . , βj) = 0 (1 ≤ j ≤ n)},

where ∆i−1F (b, b0,1, T1, . . . , Ti) and ∆j−1F (b, b0,2, U1, . . . , Uj) denote the
corresponding divided differences of F (b, b0,1, T ) ∈ Fq[T ] and F (b, b0,2, U)
∈ Fq[U ] respectively.

Arguing as in the proof of Lemmas 7.1 and 7.2, we conclude that

(10.1) m!n!Sm,n =
∣∣Γ 0
m,n(Fq) ∩ {αi 6= αj (1 ≤ i < j ≤ m),

βi 6= βj (1 ≤ i < j ≤ n), b0,1 6= b0,2}
∣∣.

The next step is to analyse the geometry of the affine Fq-variety Γ 0
m,n, its

projective closure pcl(Γ 0
m,n) ⊂ Pd+1+m+m and the set pcl(Γ 0

m,n)∞ of points

of pcl(Γ 0
m,n) at infinity. We refrain from giving details, as the proofs are

similar to those of Theorem 8.9, Lemma 8.12 and Theorem 8.13. We obtain
the following result.

Theorem 10.2. Assume that p > 2 and q > d ≥ 3. Then:

• pcl(Γ 0
m,n) is an absolutely irreducible ideal-theoretic complete intersec-

tion of dimension d+ 1 and degree (d!)2/((d−m)!(d− n)!).
• pcl(Γ 0

m,n) is regular in codimension 2, namely the singular locus of

pcl(Γ 0
m,n) has codimension at least 3 in pcl(Γ 0

m,n).

• pcl(Γ 0
m,n)∞ is a linear Fq-variety of dimension d.

To estimate the number of q-rational points of Γ 0
m,n we shall use a fur-

ther estimate of [CMP12] on the number of q-rational points of a projec-
tive complete intersection. More precisely, if V ⊂ PN is a complete in-
tersection defined over Fq of dimension r ≥ 2, degree δ and multidegree
d := (d1, . . . , dN−r), which is regular in codimension 2, then (see [CMP12,
Theorem 1.3])

(10.2)
∣∣|V (Fq)| − pr

∣∣ ≤ 14D3δ2qr−1,

where D :=
∑N−r

i=1 (di − 1).
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According to Theorem 10.2, the projective variety pcl(Γ 0
m,n) satisfies the

hypothesis of [CMP12, Theorem 1.3]. Therefore, applying (10.2) we obtain∣∣|pcl(Γ 0
m,n)(Fq)| − pd+1

∣∣ ≤ 14D3
m,nδ

2
m,nq

d,

where

Dm,n := (m+ n)d− (m(m+ 1) + n(n+ 1))/2

and

δm,n :=
(d!)2

(d−m)!(d− n)!
.

Since pcl(Γ 0
m,n)∞ is a linear Fq-variety of dimension d, we have∣∣|Γ 0
m,n(Fq)| − qd+1

∣∣ =
∣∣|pcl(Γ 0

m,n)| − |pcl(Γ 0
m,n)∞| − pd+1 + pd

∣∣(10.3)

≤ 14D3
m,nδ

2
m,nq

d.

Arguing as in Section 9.1, we obtain

(10.4)∣∣∣∣Γ 0
m,n(Fq) ∩

(
{B0,1 = B0,2} ∪

⋃
1≤i<j≤m

{Ti = Tj} ∪
⋃

1≤k<l≤n
{Uk = Ul}

)∣∣∣∣
≤ ξm,nδm,nqd,

where ξm,n :=
(
m
2

)
+
(
n
2

)
+ 1. Combining (10.1), (10.3) and (10.4) we deduce

the following result.

Theorem 10.3. Under the assumptions of Theorem 10.2, for each (m,n)
with 1 ≤ m,n ≤ d, and d+ 1 ≤ m+ n ≤ 2d, we have∣∣∣∣Sm,n − qd+1

m!n!

∣∣∣∣ ≤ qd

m!n!
(14D3

m,nδ
2
m,n + ξm,nδm,n),

where

ξm,n :=

(
m

2

)
+

(
n

2

)
+ 1, Dm,n := (m+ n)d−

(
m+ 1

2

)
−
(
n+ 1

2

)
and δm,n := (d!)2/((d−m)!(d− n)!).

Now we proceed as in Section 9.2. By Theorem 10.1, we have

V2(d, 0)− µ2dq2 = V(d, 0) +
∑

1≤m,n≤d
2≤m+n≤d

(−q)2−n−m
((

q

m

)(
q

n

)
− qm+n

m!n!

)(10.5)

+
1

qd−1

∑
1≤m,n≤d

d+1≤m+n≤2d

(−1)m+n
(
Sm,n −

qm+n

m!n!

)
.
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In Section 9.2 we have obtained the following upper bound for the absolute
value A1(d, 0) of the second term on the right-hand side of (10.5):

(10.6) A1(d, 0) ≤ 2edq.

To bound the last term on the right-hand side of (10.5), by Theorem 10.3
we have

B1(d, 0) :=
1

qd−1

∑
1≤m,n≤d

d+1≤m+n≤2d

∣∣∣∣Sm,n − qd+1

m!n!

∣∣∣∣
≤

∑
1≤m,n≤d

d+1≤m+n≤2d

(
14D3

m,nδ
2
m,n

m!n!
+
δm,nξm,n
m!n!

)
q.

With a similar argument to the proof of Corollary 9.2, we see that

(10.7) B1(d, 0) ≤
(
d2 22d−1 + 14d6

( d−1∑
k=0

(
d

k

)2

(d− k)!

)2)
q.

Finally, combining (1.1), (10.5), (10.6) and (10.7) with the arguments of the
proof of Theorem 9.3, we deduce the main result of this section.

Theorem 10.4. Assume that p > 2, q > d and d ≥ 3. Then

|V2(d, 0)− µ2dq2| ≤ (d2 22d−1 + 283d2d+8e4
√
d−2d)q.

Appendix A. Irreducibility of the discriminant of small families
of polynomials. Let K be a field and let K[X1, . . . , Xn] be the ring of
multivariate polynomials with coefficients in K. For given positive integers
a1, . . . , an, we define the weight wt(Xα) of a monomial Xα := Xα1

1 · · ·Xαn
n

as wt(Xα) :=
∑n

i=1 ai · αi. The weight wt(f) of an arbitrary element f in
K[X1, . . . , Xn] is the highest weight of all the monomials appearing with
nonzero coefficients in the dense representation of f .

An element f ∈ K[X1, . . . , Xn] is said to be weighted homogeneous (with
respect to the weight wt defined above) if all its terms have the same weight.
Equivalently, f is weighted homogeneous if and only if f(Xa1

1 , . . . , Xan
n )

is homogeneous of degree wt(f). Any polynomial f ∈ K[X1, . . . , Xn] can
be uniquely written as a sum

∑
i fi, where each fi is weighted homoge-

neous with wt(fi) = i. The polynomials fi are called the weighted homoge-
neous components of f . We shall use the following elementary property of
weights.

Fact A.1 ([HH11, Proposition 3.3.7]). Let f ∈ K[X1, . . . , Xn] be non-
constant. If the component fwt(f) of highest weight of f is irreducible in
K[X1, . . . , Xn], then f is irreducible in K[X1, . . . , Xn].
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We shall also use the following simple criterion of irreducibility.

Fact A.2. Let f ∈ K[X1, . . . , Xn] be nonconstant, s < n,

R := K[X1, . . . , Xs] and Q(R) := K(X1, . . . , Xs).

If f is a primitive polynomial of R[Xs+1, . . . , Xn] and an irreducible element
of Q(R)[Xs+1, . . . , Xn], then f is irreducible in K[X1, . . . , Xn].

Assume that the characteristic p of Fq is not 2. For d and s with 1 ≤
s ≤ d−3, let Bd−s−1, . . . , B1, B0, T be indeterminates over Fq and let B0 :=
(Bd−s−1, . . . , B1, B0). In what follows, for a given a := (ad−1, . . . , ad−s) ∈ Fsq ,

we shall consider the following polynomial in Fq[B0, T ]:

f := T d + ad−1T
d−1 + · · ·+ ad−sT

d−s +Bd−s−1T
d−s−1 + · · ·+B1T +B0.

Denote by Disc(f) ∈ Fq[B0] the discriminant of f with respect to T . We
shall consider the weight wt on Fq[B0, T ] defined by setting wt(Bj) := d− j
for 0 ≤ j ≤ d − s − 1. We observe that, extending this notion of weight to
the polynomial ring Fq[Bd, . . . , B0] in a similar way, the discriminant of a
generic degree-d polynomial of Fq[Bd, . . . , B0][T ] is weighted homogeneous
of weight d(d− 1) (see, e.g., [FS84, Lemma 2.2]).

Theorem A.3. Let p > 2, q > d and 1 ≤ s ≤ d− 3. Then Disc(f) is an
irreducible polynomial in Fq[B0].

Proof. First we suppose that p does not divide d(d−1). Consider Disc(f)
as an element of K2[B1, B0] := Fq(Bd−s−1, . . . , B2)[B1, B0], and consider the
weight w2 on K2[B1, B0] defined by setting w2(B0) := d and w2(B1) := d−1.
It is easy to see that the weighted homogeneous component of highest weight
of Disc(f) is ∆2 := ddBd−1

0 + (−1)d−1(d − 1)d−1Bd
1 . Our assumption on p

implies that ∆2 is a nonzero polynomial. Furthermore, by the Stepanov
criterion (see, e.g., [LN83, Lemma 6.54]), ∆2 is irreducible in K2[B1, B0].
Then Fact A.1 implies that Disc(f) is an irreducible element of K2[B1, B0].
Finally, as Disc(f) is a primitive polynomial in Fq[Bd−s−1, . . . , B2][B1, B0],
Fact A.2 shows that Disc(f) is irreducible in Fq[B0].

Assume now that p divides d. Let K3 := Fq(Bd−s−1, . . . , B3) and con-
sider Disc(f) as an element of K3[B2, B1, B0]. We consider the weight w3

on K3[B2, B1, B0] defined by setting w3(B0) := d, w3(B1) := d − 1 and
w3(B2) := d−2. If g := T d+B2T

2+B1T +B0, then g′ = 2B2T +B1. There-
fore, applying the Poisson formula for the resultant it is easy to prove that
Disc(g) = Bd

1+(−1)d+12d−2Bd−1
2 B2

1+(−1)d2dBd
2B0. Since deg f = deg g = d

and the discriminant of a generic polynomial of degree d is weighted ho-
mogeneous of degree d(d − 1), it follows that Disc(g) is the component
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of highest weight of Disc(f). Furthermore, we claim that Disc(g) is irre-
ducible in K3[B2, B1, B0]. Indeed, considering Disc(g) as a polynomial in
K3(B0)[B2, B1], we see that it is the sum of two homogeneous polynomials
of degrees d and d+ 1 without common factors, namely Bd

1 + (−1)d2dBd
2B0

and (−1)d+12d−2Bd−1
2 B2

1 . Then [Gib98, Lemma 3.15] proves that Disc(g)
is irreducible in K3(B0)[B2, B1], which in turn implies it is irreducible in
K3[B2, B1, B0] by Fact A.2. Combining this with Fact A.1 we deduce that
Disc(f) is irreducible in K3[B2, B1, B0], from which we readily conclude that
it is irreducible in Fq[B0] by Fact A.2.

Finally, suppose that p divides d−1 and consider Disc(f) as an element of
K3[B2, B1, B0]. Arguing as before we conclude that the discriminant Disc(g)
of g := T d+B2T

2+B1T +B0 is the component of highest weight of Disc(f).
Observe that g′ = T d−1 + 2B2T +B1, and thus

Disc(g) =
ResT (g, Tg′− g)

ResT (g, T )
=

ResT (g,B2T
2−B0)

ResT (g, T )

=
ResT (T d +B1T + 2B0, B2T

2−B0)

ResT (g, T )
.

Applying the Poisson formula for the resultant, we easily deduce that

Disc(g) =

 4Bd
2B0 +Bd−1

0 + 4B
d/2
0 B

d/2
2 −B2

1B
d−1
2 for d even,

−4Bd
2B0 +Bd−1

0 + 2B
d−1
2

0 B
d−1
2

2 −B2
1B

d−1
2 for d odd.

Then Disc(g) is irreducible in Fq[B0, B2][B1] by the Eisenstein criterion and
Disc(f) is irreducible in K3[B2, B1, B0] by Fact A.1. Arguing as above we
find that Disc(f) is irreducible in Fq[B0], thus finishing the proof of the
theorem.
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