16,459 research outputs found
The Boulware State and the Generalised Second Law of Thermodynamics
We show that the appropriate vacuum state for the interior of a box with
reflecting walls being lowered adiabatically into a Schwarzschild black hole is
the Boulware state. This is concordant with the results of Unruh and Wald, who
used a different approach to obtain the stress-energy inside the box. Some
comments about an entropy bound for ordinary matter, as first conjectured by
Bekenstein, are presented.Comment: 12 pages, RevTeX,Alberta-Thy-3-9
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles
Radar cross calibration investigation TAMU radar polarimeter calibration measurements
A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described
Rapid solution of problems by nuclear-magnetic-resonance quantum computation
We offer an improved method for using a nuclear-magnetic-resonance quantum
computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the
application of the NMRQC are exponential diminishment of density-matrix
elements with the number of bits, threatening weak signal levels, and the high
cost of preparing a suitable starting state. A third obstacle is a heretofore
unnoticed restriction on measurement operators available for use by an NMRQC.
Variations on the function classes of the Deutsch-Jozsa problem are introduced,
both to extend the range of problems advantageous for quantum computation and
to escape all three obstacles to use of an NMRQC. By adapting it to one such
function class, the Deutsch-Jozsa problem is made solvable without exponential
loss of signal. The method involves an extra work bit and a polynomially more
involved Oracle; it uses the thermal-equilibrium density matrix systematically
for an arbitrary number of spins, thereby avoiding both the preparation of a
pseudopure state and temporal averaging.Comment: 19 page
The internal structure and formation of early-type galaxies: the gravitational--lens system MG2016+112 at z=1.004
[Abridged] We combine our measurements of the velocity dispersion and the
surface brightness profile of the lens galaxy D in the system MG2016+112
(z=1.004) with constraints from gravitational lensing to study its internal
mass distribution. We find that: (i) dark matter accounts for >50% of the total
mass within the Einstein radius (99% CL), excluding at the 8-sigma level that
mass follows light inside the Einstein radius with a constant mass-to-light
ratio (M/L). (ii) the total mass distribution inside the Einstein radius is
well-described by a density profile ~r^-gamma' with an effective slope
gamma'=2.0+-0.1+-0.1, including random and systematic uncertainties. (iii) The
offset of galaxy D from the local Fundamental Plane independently constrains
the stellar M/L, and matches the range derived from our models, leading to a
more stringent lower limit of >60% on the fraction of dark matter within the
Einstein radius (99%CL).
Under the assumption of adiabatic contraction, the inner slope of the dark
matter halo before the baryons collapsed is gamma_i<1.4 (68 CL), marginally
consistent with the highest-resolution cold dark matter simulations that
indicate gamma_i~1.5. This might indicate that either adiabatic contraction is
a poor description of E/S0 formation or that additional processes play a role
as well. Indeed, the apparently isothermal density distribution inside the
Einstein radius, is not a natural outcome of adiabatic contraction models,
where it appears to be a mere coincidence. By contrast, we argue that
isothermality might be the result of a stronger coupling between luminous and
dark-matter, possibly the result of (incomplete) violent relaxation processes.
Hence, we conclude that galaxy D appears already relaxed 8 Gyr ago.Comment: 8 pages, 4 figures, ApJ, in press, minor change
Spitzer Mid-Infrared Photometry of 500 - 750 K Brown Dwarfs
Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is
critical for understanding the cold population of brown dwarfs now being found,
objects which have more in common with planets than stars. As effective
temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted
beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase
makes a color like H-[4.5] a very sensitive temperature indicator, and it can
be combined with a gravity- and metallicity-sensitive color like H-K to
constrain all three of these fundamental properties, which in turn gives us
mass and age for these slowly cooling objects. Determination of mid-infrared
color trends also allows better exploitation of the WISE mission by the
community. We use new Spitzer Cycle 6 IRAC photometry, together with published
data, to present trends of color with type for L0 to T10 dwarfs. We also use
the atmospheric and evolutionary models of Saumon & Marley to investigate the
masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and
T_eff ~ 500 K to 750 K.Comment: To be published in the on-line version of the Proceedings of Cool
Stars 16 (ASP Conference Series). This is an updated version of Leggett et
al. 2010 ApJ 710 1627; a photometry compilation is available at
http://www.gemini.edu/staff/slegget
Applied Remote Sensing Program (ARSP)
There are no author-identified significant results in this report
The [4+2]âCycloaddition of αâNitrosoalkenes with Thiochalcones as a Prototype of Periselective HeteroâDielsâAlder ReactionsâExperimental and Computational Studies
The [4+2]âcycloadditions of αânitrosoalkenes with thiochalcones occur with high selectivity at the thioketone moiety of the dienophile providing styrylâsubstituted 4Hâ1,5,2âoxathiazines in moderate to good yields. Of the eight conceivable heteroâDielsâAlder adducts only this isomer was observed, thus a prototype of a highly periselective and regioselective cycloaddition has been identified. Analysis of crude product mixtures revealed that the αânitrosoalkene also adds competitively to the thioketone moiety of the thiochalcone dimer affording bisâheterocyclic [4+2]âcycloadducts. The experiments are supported by highâlevel DFT calculations that were also extended to related heteroâDielsâAlder reactions of other nitroso compounds and thioketones. These calculations reveal that the title cycloadditions are kinetically controlled processes confirming the role of thioketones as superdienophiles. The computational study was also applied to the experimentally studied thiochalcone dimerization, and showed that the 1,2âdithiin and 2Hâthiopyran isomers are in equilibrium with the monomer. Again, the DFT calculations indicate kinetic control of this process
Struggling and juggling: a comparison of assessment loads in research and teaching-intensive universities
In spite of the rising tide of metrics in UK higher education, there has been scant attention paid to assessment loads, when evidence demonstrates that heavy demands lead to surface learning. Our study seeks to redress the situation by defining assessment loads and comparing them across research-and teaching intensive universities. We clarify the concept of âassessment loadâ in response to findings about high volumes of summative assessment on modular degrees. We define assessment load across whole undergraduate degrees, according to four measures: the volume of summative assessment; volume of formative assessment; proportion of examinations to coursework; number of different varieties of assessment. All four factors contribute to the weight of an assessment load, and influence studentsâ approaches to learning. Our research compares programme assessment data from 73 programmes in 14 UK universities, across two institutional categories. Research-intensives have higher summative assessment loads and a greater proportion of examinations; teaching-intensives have higher varieties of assessment. Formative assessment does not differ significantly across both university groups. These findings pose particular challenges for students in different parts of the sector. Our study questions the wisdom that âmoreâ is always better, proposing that lighter assessment loads may make room for âslowâ and deep learning
- âŠ