Mid-infrared data, including Spitzer warm-IRAC [3.6] and [4.5] photometry, is
critical for understanding the cold population of brown dwarfs now being found,
objects which have more in common with planets than stars. As effective
temperature (T_eff) drops from 800 K to 400 K, the fraction of flux emitted
beyond 3 microns increases rapidly, from about 40% to >75%. This rapid increase
makes a color like H-[4.5] a very sensitive temperature indicator, and it can
be combined with a gravity- and metallicity-sensitive color like H-K to
constrain all three of these fundamental properties, which in turn gives us
mass and age for these slowly cooling objects. Determination of mid-infrared
color trends also allows better exploitation of the WISE mission by the
community. We use new Spitzer Cycle 6 IRAC photometry, together with published
data, to present trends of color with type for L0 to T10 dwarfs. We also use
the atmospheric and evolutionary models of Saumon & Marley to investigate the
masses and ages of 13 very late-type T dwarfs, which have H-[4.5] > 3.2 and
T_eff ~ 500 K to 750 K.Comment: To be published in the on-line version of the Proceedings of Cool
Stars 16 (ASP Conference Series). This is an updated version of Leggett et
al. 2010 ApJ 710 1627; a photometry compilation is available at
http://www.gemini.edu/staff/slegget