We offer an improved method for using a nuclear-magnetic-resonance quantum
computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the
application of the NMRQC are exponential diminishment of density-matrix
elements with the number of bits, threatening weak signal levels, and the high
cost of preparing a suitable starting state. A third obstacle is a heretofore
unnoticed restriction on measurement operators available for use by an NMRQC.
Variations on the function classes of the Deutsch-Jozsa problem are introduced,
both to extend the range of problems advantageous for quantum computation and
to escape all three obstacles to use of an NMRQC. By adapting it to one such
function class, the Deutsch-Jozsa problem is made solvable without exponential
loss of signal. The method involves an extra work bit and a polynomially more
involved Oracle; it uses the thermal-equilibrium density matrix systematically
for an arbitrary number of spins, thereby avoiding both the preparation of a
pseudopure state and temporal averaging.Comment: 19 page