961 research outputs found

    Detection of X-ray line emission from the shell of SNR B0540-69.3 with XMM-Newton RGS

    Get PDF
    We present X-ray observations of PSR 0540-69.3 with the XMM-Newton observatory. The spectra obtained with the Reflection Grating Spectrometer reveal, for the first time, emission from ionized species of O, Ne and Fe originating from the SNR shell. Analysis of the emission line spectrum allows us to derive estimates of the temperature, ionization timescale, abundances, location, and velocity of the emitting gas.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysics, letters (XMM issue

    The Chandra Iron-L X-Ray Line Spectrum of Capella

    Full text link
    An analysis of the iron L-shell emission in the publicly available spectrum of the Capella binary system, as obtained by the High Energy Transmission Grating Spectrometer on board the Chandra X-ray Observatory, is presented. The atomic-state model, based on the HULLAC code, is shown to be especially adequate for analyzing high-resolution x-ray spectra of this sort. Almost all of the spectral lines in the 10 - 18 Angstrom wavelength range are identified. It is shown that, for the most part, these lines can be attributed to emission from L-shell iron ions in the Capella coronae. Possibilities for electron temperature diagnostics using line ratios of Fe16+ are demonstrated. It is shown that the observed iron-L spectrum can be reproduced almost entirely by assuming a single electron temperature of kTe= 600 eV. This temperature is consistent with both the measured fractional ion abundances of iron and with the temperature derived from ratios of Fe16+ lines. A volume emission measure of 1053 cm-3 is calculated for the iron L-shell emitting regions of the Capella coronae indicating a rather small volume of 1029 cm3 for the emitting plasma if an electron density of 1012 cm-3 is assumed.Comment: Accepted to Ap

    Lattice dynamics and the electron-phonon interaction in Ca2_2RuO4_4

    Full text link
    We present a Raman scattering study of Ca2_2RuO4_4, in which we investigate the temperature-dependence of the lattice dynamics and the electron-phonon interaction below the metal-insulator transition temperature ({\it T}MI_{\rm MI}). Raman spectra obtained in a backscattering geometry with light polarized in the ab-plane reveal 9 B1g_{1g} phonon modes (140, 215, 265, 269, 292, 388, 459, 534, and 683 cm1^{-1}) and 9 Ag_g phonon modes (126, 192, 204, 251, 304, 322, 356, 395, and 607 cm1^{-1}) for the orthorhombic crystal structure (Pbca-D2h15_{2h}^{15}). With increasing temperature toward {\it T}MI_{\rm MI}, the observed phonon modes shift to lower energies and exhibit reduced spectral weights, reflecting structural changes associated with the elongation of the RuO6_6 octahedra. Interestingly, the phonons exhibit significant increases in linewidths and asymmetries for {\it T} >> {\it T}N_{\rm N}. These results indicate that there is an increase in the effective number of electrons and the electron-phonon interaction strengths as the temperature is raised through {\it T}N_{\rm N}, suggesting the presence of orbital fluctuations in the temperature regime {\it T}N_{\rm N} << {\it T} << {\it T}MI_{\rm MI}.Comment: 6 pages, 4 figure

    Anomalous frequency and intensity scaling of collective and local modes in a coupled spin tetrahedron system

    Full text link
    We report on the magnetic excitation spectrum of the coupled spin tetrahedral system Cu2_{2}Te2_{2}O5_{5}Cl2_{2} using Raman scattering on single crystals. The transition to an ordered state at TNCl_{N}^{Cl}=18.2 K evidenced from thermodynamic data leads to the evolution of distinct low-energy magnetic excitations superimposed by a broad maximum. These modes are ascribed to magnons with different degree of localization and a two-magnon continuum. Two of the modes develop a substantial energy shift with decreasing temperature similar to the order parameter of other Neel ordered systems. The other two modes show only a negligible temperature dependence and dissolve above the ordering temperature in a continuum of excitations at finite energies. These observations point to a delicate interplay of magnetic inter- and intra-tetrahedra degrees of freedom and an importance of singlet fluctuations in describing a spin dynamics.Comment: 7pages, 6figures, 1tabl

    Discovery of X-ray absorption features from the dipping low-mass X-ray binary XB 1916-053 with XMM-Newton

    Full text link
    We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in September 2002. In addition, there is marginal evidence for absorption features at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption lines from highly ionized ions are now observed in a number of high inclination (ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is estimated to be between 60-80 degrees. This, together with the lack of any orbital phase dependence of the features (except during dips), suggests that the highly ionized plasma responsible for the absorption lines is located in a cylindrical geometry around the compact object. Using the ratio of Fe XXV and Fe XXVI column densities, we estimate the photo-ionization parameter of the absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is observed during dipping intervals and the upper-limits to the Fe XXVI column density are consistent with a decrease in the amount of ionization during dipping intervals. This implies the presence of cooler material in the line of sight during dipping. We also report the discovery of a 0.98 keV absorption edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV during deep dipping intervals. The detected feature may result from edges of moderately ionized Ne and/or Fe with the average ionization level decreasing from persistent emission to deep dipping. This is again consistent with the presence of cooler material in the line of sight during dipping.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic

    Intrinsic Energy Localization through Discrete Gap Breathers in One-Dimensional Diatomic Granular Crystals

    Get PDF
    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic FPU-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and highlight in that the asymmetric nature of the latter interaction potential may lead to a form of hybrid bulk-surface localized solutions

    Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots

    Full text link
    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing of the temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single particle energy levels in the QDs show strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wave functions confined in QDs increase by about 1 - 5%, whereas the hole wave functions decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The calculated recombination energies of exciton, biexciton and charged excitons show red shifts with increasing of the temperature, which are in excellent agreement with available experimental data

    Nonlinear Spin Dynamics in Ferromagnets with Electron-Nuclear Coupling

    Full text link
    Nonlinear spin motion in ferromagnets is considered with nonlinearity due to three factors: (i) the sample is prepared in a strongly nonequilibrium state, so that evolution equations cannot be linearized as would be admissible for spin motion not too far from equilibrium, (ii) the system considered consists of interacting electron and nuclear spins coupled with each other via hyperfine forces, and (iii) the sample is inserted into a coil of a resonant electric circuit producing a resonator feedback field. Due to these nonlinearities, coherent motion of spins can develop, resulting in their ultrafast relaxation. A complete analysis of mechanisms triggering such a coherent motion is presented. This type of ultrafast coherent relaxation can be used for studying intrinsic properties of magnetic materials.Comment: 1 file, LaTex, 23 page

    Implications of X-Ray Line Variations for 4U1822-371

    Get PDF
    4U 1822-371 is one of the proto-type accretion disk coronal sources with an orbital period of about 5.6 hours. The binary is viewed almost edge-on at a high inclination angle of 83 degrees, which makes it a unique candidate to study binary orbital and accretion disk dynamics in high powered X-ray sources. We observed the X-ray source in 4U 1822-371 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for almost nine binary orbits. X-ray eclipse times provide an update of the orbital ephemeris. We find that our result follows the quadratic function implied by previous observations; however, it suggests a flatter trend. Detailed line dynamics also confirm a previous suggestion that the observed photo-ionized line emission originates from a confined region in the outer edge of the accretion disk near the hot spot. Line properties allow us to impose limits on the size of accretion disk, the central corona, and the emission region. The photo-ionized plasma is consistent with ionization parameters of log(xi) > 2, and when combined with disk size and reasonable assumptions for the plasma density, this suggests illuminating disk luminosities which are over an order of magnitude higher than what is actually observed. That is, we do not directly observe the central emitting X-ray source. The spectral continua are best fit by a flat power law with a high energy cut-off and partial covering absorption (N_H ranging from 5.4-6.3x10^{22} cm^{-2}) with a covering fraction of about 50%. We discuss some implications of our findings with respect to the photo-ionized line emission for the basic properties of the X-ray source.Comment: Submitted to the Astrophysical Journa
    corecore