496 research outputs found
p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signalling
Plexins are transmembrane receptors for semaphorins, guiding cell migration and axon extension. Plexin activation leads to the disassembly of integrin-based focal adhesive structures and to actin cytoskeleton remodelling and inhibition of cell migration; however, the underlying molecular mechanisms are unclear. We consistently observe a transient decrease of cellular RhoA-GTP levels upon plexin activation in adherent cells. One of the main effectors of RhoA downregulation is p190, a ubiquitously expressed GTPase activating protein (GAP). We show that, in p190-deficient fibroblasts, the typical functional activities mediated by plexins (such as cell collapse and inhibition of integrin-based adhesion) are blocked or greatly impaired. Notably, the functional response can be rescued in these cells by re-expressing exogenous p190, but not a mutant form specifically lacking RhoGAP activity. We furthermore demonstrate that semaphorin function is blocked in epithelial cells, primary endothelial cells and neuroblasts upon treatment with small interfering RNAs that knockdown p190 expression. Finally, we show that p190 transiently associates with plexins, and its RhoGAP activity is increased in response to semaphorin stimulation. We conclude that p190-RhoGAP is crucially involved in semaphorin signalling to the actin cytoskeleton, via interaction with plexins
Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts
Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy. STEM CELLS 2011;29:2051-206
Climate Change and invasibility of the Antarctic benthos
Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica
The October 2000 flooding in Valle d'Aosta (Italy): Event description and land planning measures for the risk mitigation
On October 13-16th, 2000 heavy rainfalls in the Northwestern Italian Alps caused huge flooding and landslides with significant damages to houses and infrastructures and several life losses. In this paper a description of the main events that affected Valle d’Aosta’s region and the subsequent land planning measures adopted for the risk mitigation are presented. After a first meteorological and hydrological framing, based on the data of the regional monitoring system (that pointed out rainfalls up to 236 mm in 24 h also in high‐altitude zones, because of the rise of the isotherm 0°C around 3000 m above sea level), the main effects of the event (extensive flooding, landslides, soil slips and debris flows) in the regional catchment of the Dora Baltea river are described. Through aerial and direct surveys those effects have been transferred into a thematic cartography within two months from the event, in order to have detailed elements for the technical, administrative and political land planning decisions, and, on this basis, a new regional directive containing detailed measures for the hydro‐geological risk mitigation and land safety has been adopted. © 2003 by Taylor nad Francis Group, LLC
Habitat Preferences of Italian Freshwater Fish: A Systematic Review of Data Availability for Applications of the MesoHABSIM Model
The MesoHABitat SImulation Model (MesoHABSIM) is the preferred method to calculate spatio-temporal variation in the fish habitat availability in Italian rivers. With the aim of improving the applicability of the MesoHABSIM approach in the Italian territory, we carried out a systematic review of physical habitat preferences for 31 freshwater fish species and three freshwater lampreys, representing 75% of the total indigenous freshwater fish community of Italy. Information related to suitable ranges of depth, flow velocity, biotic/abiotic substrates, covers/shelters was collected and summarized for two critical life stages (adult and juvenile) and two bioperiods (rearing/growth and spawning). Overall, 250 publications were reviewed, classified as 206 peer-reviewed papers, 20 books, 7 PhD thesis, and 17 grey literature sources. Our analysis revealed substantial deficits of information about habitat requirements for more than 30% of Italian freshwater fish species. This information is particularly scarce for the most threatened endemic species, especially for their most critical bioperiod (i.e., spawning). With the aim of preserving freshwater fish biodiversity as required in the EU Biodiversity Strategy for 2030 (European Commission, 2020), accurate information on physical habitat requirements for spawning is crucial. As an example application of MesoHABSIM, the collected habitat preference information was used to define and apply mesohabitat suitability criteria for one fish species (Telestes muticellus) in a regulated river reach of Argentina Creek (Province of Imperia, Italy). This analysis demonstrates the potential for applying information from the current review to other fish species
MET is required for the recruitment of anti-tumoural neutrophils
Mutations or amplification of the MET proto-oncogene are involved in the pathogenesis of several tumours, which rely on the constitutive engagement of this pathway for their growth and survival. However, MET is expressed not only by cancer cells but also by tumour-associated stromal cells, although its precise role in this compartment is not well characterized. Here we show that MET is required for neutrophil chemoattraction and cytotoxicity in response to its ligand hepatocyte growth factor (HGF). Met deletion in mouse neutrophils enhances tumour growth and metastasis. This phenotype correlates with reduced neutrophil infiltration to both the primary tumour and metastatic sites. Similarly, Met is necessary for neutrophil transudation during colitis, skin rash or peritonitis. Mechanistically, Met is induced by tumour-derived tumour necrosis factor (TNF)-α or other inflammatory stimuli in both mouse and human neutrophils. This induction is instrumental for neutrophil transmigration across an activated endothelium and for inducible nitric oxide synthase production upon HGF stimulation. Consequently, HGF/MET-dependent nitric oxide release by neutrophils promotes cancer cell killing, which abates tumour growth and metastasis. After systemic administration of a MET kinase inhibitor, we prove that the therapeutic benefit of MET targeting in cancer cells is partly countered by the pro-tumoural effect arising from MET blockade in neutrophils. Our work identifies an unprecedented role of MET in neutrophils, suggests a potential ‘Achilles’ heel’ of MET-targeted therapies in cancer, and supports the rationale for evaluating anti-MET drugs in certain inflammatory diseases
Thromopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures.
Thrombopoietin (TPO) is a critical cytokine regulating hematopoietic stem cell maintenance and differentiation into the megakaryocytic lineage. However, the transcriptional and chromatin dynamics elicited by TPO signaling are poorly understood. Here, we study the immediate early transcriptional and cis-regulatory responses to TPO in hematopoietic stem/progenitor cells (HSPCs) and use this paradigm of cytokine signaling to chromatin to dissect the relation between cis- regulatory activity and chromatin architecture. We show that TPO profoundly alters the transcriptome of HSPCs, with key hematopoietic regulators being transcriptionally repressed within 30 minutes of TPO. By examining cis-regulatory dynamics and chromatin architectures, we demonstrate that these changes are accompanied by rapid and extensive epigenome remodeling of cis-regulatory landscapes that is spatially coordinated within topologically associating domains (TADs). Moreover, TPO-responsive enhancers are spatially clustered and engage in preferential homotypic intra- and inter-TAD interactions that are largely refractory to TPO signaling. By further examining the link between cis-regulatory dynamics and chromatin looping, we show that rapid modulation of cis-regulatory activity is largely independent of chromatin looping dynamics. Finally, we show that, although activated and repressed cis-regulatory elements share remarkably similar DNA sequence compositions, transcription factor binding patterns accurately predict rapid cis-regulatory responses to TPO
Tumor cell-derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10.
n/
The long-lasting protective effect of HGF in cardiomyoblasts exposed to doxorubicin requires a positive feed-forward loop mediated by ERK1,2-TIMP1-STAT3
Previous studies showed that the hepatocyte growth factor (HGF)–Met receptor axis plays long-lasting cardioprotection against doxorubicin anti-cancer therapy. Here, we explored the mechanism(s) underlying the HGF protective effect. DNA damage was monitored by histone H2AX phosphorylation and apoptosis by proteolytic cleavage of caspase 3. In doxorubicin-treated H9c2 cardiomyoblasts, the long-lasting cardioprotection is mediated by activation of the Ras/Raf/Mek/Erk (extracellular signal-regulated kinase 1,2) signaling pathway and requires Stat3 (signal transducer and activator of transcription 3) activation. The HGF protection was abrogated by the Erk1,2 inhibitor, PD98059. This translated into reduced Y705 phosphorylation and impaired nuclear translocation of Stat3, showing crosstalk between Erk1,2 and Stat3 signaling. An array of 29 cytokines, known to activate Stat3, was interrogated to identify the molecule(s) linking the two pathways. The analysis showed a selective increase in expression of the tissue inhibitor of metalloproteinases-1 (Timp1). Consistently, inhibition in cardiomyoblasts of Timp1 translation by siRNAs blunted both Stat3 activation and the cardioprotective effect of HGF. Thus, Timp1 is responsible for the generation of a feed-forward loop of Stat3 activation and helps cardiomyocytes to survive during the genotoxic stress induced by anthracyclines
- …
