148 research outputs found

    Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria

    Get PDF
    Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0–10 cm (Horizon O); 11–25 cm (Horizon A) and 26–40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil

    Growth dynamics of deciduous species during their life period: A case study of urban green space in India

    Get PDF
    It is evident that grass density (GD) and shoot growth rate (SGR) governs the differential settlement of substructure, groundwater recharge, and stability of green infrastructure. GD and SGR are usually assumed to be constant during the entire life period of vegetation. However, spatial and temporal dynamics of GD and SGR in urban green space were rarely explored previously. The main objective of this study is to explore the spatial and temporal dynamics of GD and SGR in urban space vegetated with deciduous species (mix grass i.e., Poaceae and Bauhinia purpurea). Field monitoring was conducted in the urban green space for one year (i.e., life period of selected species). The monitoring period includes the growth period and gradual wilting period. Substantial spatial variation of GD was found during the first six months. GD away from the tree trunk was found to be 1.02–56.3 times higher than that near the tree trunk during the first six months. Thereafter, any spatial variation of GD was not found in the next six months. Unlike the GD, SGR was found to vary during the entire life period of mix grass. In addition, SGR away from the tree trunk was found to be 1.1–4.6 times higher than that near the tree trunk. Any relationship between GD and rainfall depth was not found. Whereas, SGR mainly depends on rainfall depth. The hypothesis of uniformity in GD and SGR during the life period of deciduous species was not found to be true

    Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem

    Get PDF
    The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change

    Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

    Get PDF
    Background: Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship. Methodology: We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species. Principal Findings: At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition. Conclusions/Significance: Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale

    A window into fungal endophytism in Salicornia europaea: deciphering fungal characteristics as plant growth promoting agents

    Get PDF
    Aim Plant-endophytic associations exist only when equilibrium is maintained between both partners. This study analyses the properties of endophytic fungi inhabiting a halophyte growing in high soil salinity and tests whether these fungi are beneficial or detrimental when non-host plants are inoculated. Method Fungi were isolated from Salicornia europaea collected from two sites differing in salinization history (anthropogenic and naturally saline) and analyzed for plant growth promoting abilities and non-host plant interactions. Results Most isolated fungi belonged to Ascomycota (96%) including dematiaceous fungi and commonly known plant pathogens and saprobes. The strains were metabolically active for siderophores, polyamines and indole-3-acetic acid (mainly Aureobasidium sp.) with very low activity for phosphatases. Many showed proteolytic, lipolytic, chitinolytic, cellulolytic and amylolytic activities but low pectolytic activity. Different activities between similar fungal species found in both sites were particularly seen for Epiccocum sp., Arthrinium sp. and Trichoderma sp. Inoculating the non-host Lolium perenne with selected fungi increased plant growth, mainly in the symbiont (Epichloë)-free variety. Arthrinium gamsii CR1-9 and Stereum gausapatum ISK3-11 were most effective for plant growth promotion. Conclusions This research suggests that host lifestyle and soil characteristics have a strong effect on endophytic fungi, and environmental stress could disturb the plant-fungi relations. In favourable conditions, these fungi may be effective in facilitating crop production in non-cultivable saline lands
    corecore