159 research outputs found

    Arc discharge synthesis of CNTs in hydrogen environment in presence of magnetic field

    Get PDF
    In this study the effect of hydrogen ambient environment on the growth of carbon nanotubes by arc discharge plasma in presence of external magnetic field is investigated. The samples collected from cathode deposit are analyzed by field emission scanning electron microscopy and Raman spectroscopy. Results show an increase in carbon nanotube growth with increase in hydrogen ambient pressure. The magnetic field considerably enhances the growth of carbon nanotube as observed in FESEM micrographs. In Raman spectrum, high intensity of G peak as compared to D peak indicates the presence of high quality nanotubes. Magnetic effect remarkably decreases ID/IG ratio from 1.55 to 0.31 for ambient pressure 10 mbar

    Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu

    Get PDF
    Extracorporeal shock waves (ESWTs) are \u201cmechanical\u201d waves, widely used in regenerative medicine, including soft tissue wound repair. Although already being used in the clinical practice, the mechanism of action underlying their biological activities is still not fully understood. In the present paper we tried to elucidate whether a proinflammatory effect may contribute to the regenerative potential of shock waves treatment. For this purpose, we exposed human foreskin fibroblasts (HFF1 cells) to an ESWT treatment (100 pulses using energy flux densities of 0.19 mJ/mm2 at 3 Hz), followed by cell analyses after 5 min, up to 48 h. We then evaluated cell proliferation, reactive oxygen species generation, ATP release, and cytokine production. Cells cultured in the presence of lipopolysaccharide (LPS), to induce inflammation, were used as a positive control, indicating that LPS-mediated induction of a proinflammatory pattern in HFF1 increased their proliferation. Here, we provide evidence that ESWTs affected fibroblast proliferation through the overexpression of selected cytokines involved in the establishment of a proinflammatory program, superimposable to what was observed in LPS-treated cells. The possibility that inflammatory circuits can be modulated by ESWT mechanotransduction may disclose novel hypothesis on their biological underpinning and expand the fields of their biomedical application

    RRx-001, an epigenetic-based radio- and chemosensitizer, has vascular normalizing effects on SCCVII and U87 tumors

    Get PDF
    BACKGROUND: The tumor-specific microregional effects of the anticancer agent RRx-001, a novel epigenetic-based radio/chemosensitizer with nitrogen oxide-donating properties in phase II clinical trials, were investigated with whole tissue section quantitative immunohistological staining in mouse SCCVII and human U87 tumors. RESULTS: SCCVII tumors exhibited regions of intermittent perfusion exemplified by co-localization of vessels with the hypoxia marker pimonidazole commonly occurring throughout the tissue. A moderate increase in perfusion (21 to 28 %) was observed after a bolus dose of the perivascular stain DiOC(7)(3), however, with the absence of an increase in tissue oxygenation. U87 tumors showed an absence of blood flow over large areas of treated tumors after dosing with RRx-001. However, these areas did not become necrotic and returned to near normal levels after 12 h. No significant change in tumor hypoxia was seen at 90 min or 12 h. For both tumor types, RRx-001 treatment resulted in the loss of perfusion in the large regions of the tumor; however, at the 12-h time point, both tumor types showed an increase in vessel perfusion but no significant decrease in hypoxia. CONCLUSIONS: These data suggest a redistribution of blood flow within the tumor for both tumor types akin to vascular normalization. Differences between the tumors were related to tumor architecture and distribution of alpha-smooth muscle actin (α-SMA). RRx-001 shows promise for short-term blood flow redistribution in tumors with a pericyte- and α-SMA-rich vasculature. Expression of α-SMA in tumor vasculature could therefore be useful for predicting tumor response to RRx-001

    Multi-walled carbon nanotubes grow under low pressure hydrogen, air, and argon ambient by arc discharge plasma

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) were grown on cathode deposit by arc discharge plasma under H2, Ar, and air ambient environment. The influence of ambient gas pressure on the structure and physical properties of carbon nanotube were compared. Herein, we highlight the influence of ambient environment and pressure to grow high quality carbon nanotubes. Field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction were used for structural characterization and yield determination. The result revealed that background gas and pressure were crucial factor for growing highly crystalline and highly graphitic with ID/IG ratio 0.237 obtained for MWCNTs’ synthesized in H2 environment with extreme low defects

    Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance.

    Get PDF
    BACKGROUND: We have previously shown that hypoxia selects for more invasive, apoptosis-resistant LNCaP prostate cancer cells, with upregulation of the osteogenic transcription factor RUNX2 and the anti-apoptotic factor Bcl-2 detected in the hypoxia-selected cells. Following this observation, we questioned through what biological mechanism this occurs. METHODS: We examined the effect of hypoxia on RUNX2 expression and the role of RUNX2 in the regulation of Bcl-2 and apoptosis resistance in prostate cancer. RESULTS: Hypoxia increased RUNX2 expression in vitro, and bicalutamide-treated LNCaP tumours in mice (previously shown to have increased tumour hypoxia) exhibited increased RUNX2 expression. In addition, RUNX2-overexpressing LNCaP cells showed increased cell viability, following bicalutamide and docetaxel treatment, which was inhibited by RUNX2 siRNA; a range of assays demonstrated that this was due to resistance to apoptosis. RUNX2 expression was associated with increased Bcl-2 levels, and regulation of Bcl-2 by RUNX2 was confirmed through chromatin immunoprecipitation (ChIP) binding and reporter assays. Moreover, a Q-PCR array identified other apoptosis-associated genes upregulated in the RUNX2-overexpressing LNCaP cells. CONCLUSION: This study establishes a contributing mechanism for progression of prostate cancer cells to a more apoptosis-resistant and thus malignant phenotype, whereby increased expression of RUNX2 modulates the expression of apoptosis-associated factors, specifically Bcl-2

    Prognostic significance of microvessel density and other variables in Japanese and British patients with primary invasive breast cancer

    Get PDF
    The purpose of this study is to investigate the associations of microvessel density (MVD) and other pathological variables with survival, and whether they accounted for survival differences between Japanese and British patients. One hundred seventy-three Japanese and 184 British patients were included in the study. British patients were significantly older (56.3±11.4 years vs 52.5±12.9 years; P<0.01) and had smaller tumours (2.2±1.3 vs 2.7±1.8 cm; P<0.01), which were more frequently oestrogen receptor positive (78.8 vs 57.2%, P<0.01), had more grade III tumours (29.9 vs 21.4%, P=0.04) and more infiltrating lobular carcinomas (13.6 vs 4.0%, P<0.01) and a higher MVD compared with Japanese patients (57.9±19.8 vs 53.2±18.6; P=0.01). However, no difference in the prevalence of lymph-node metastasis was found between them (39.1 vs 37.5%, P=0.75). Younger British patients (age <50 years) had the highest MVD compared with Japanese and older British patients (P<0.01). Japanese patients were proportionately more likely to receive chemotherapy than endocrine therapy (P<0.01). British patients had a significantly worse relapse-free survival and overall survival compared with Japanese patients, after statistical adjustment for variables (hazard ratio=2.1, 2.4, P<0.01, P<0.01, respectively), especially, in T2 stage, low MVD and older subgroup (HR: 3.6, 5.0; 3.1, 3.3; 3.2, 3.9, respectively), but only in ER negative cases (P=0.04, P=0.01, respectively). The present study shows that MVD contributes to the Japanese–British disparity in breast cancer. However, the MVD variability did not explain the survival differences between Japanese and British patients

    Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression <it>in vivo.</it></p> <p>Methods</p> <p>Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated.</p> <p>Results</p> <p>We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression <it>in vitro</it>, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na<sup>+</sup>-K<sup>+ </sup>ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues.</p> <p>Conclusions</p> <p>This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na<sup>+</sup>-K<sup>+ </sup>ATPase was involved in hypoxic inhibition of tumor progression. The results from this study provide new insights into the role of hypoxia in tumor progression and therapeutic strategies for cancer treatment.</p

    Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    Get PDF
    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC data were also developed, and computational mapping of MALDI-MSI data to IHC results was applied for data validation. The results and limitations of the methodologies described are discussed. 2014 American Chemical Societ
    corecore