2,729 research outputs found
Observing Gravitational Waves with a Single Detector
A major challenge of any search for gravitational waves is to distinguish
true astrophysical signals from those of terrestrial origin. Gravitational-wave
experiments therefore make use of multiple detectors, considering only those
signals which appear in coincidence in two or more instruments. It is unclear,
however, how to interpret loud gravitational-wave candidates observed when only
one detector is operational. In this paper, we demonstrate that the observed
rate of binary black hole mergers can be leveraged in order to make confident
detections of gravitational-wave signals with one detector alone. We quantify
detection confidences in terms of the probability that a signal
candidate is of astrophysical origin. We find that, at current levels of
instrumental sensitivity, loud signal candidates observed with a single
Advanced LIGO detector can be assigned . In the future,
Advanced LIGO may be able to observe single-detector events with confidences
exceeding .Comment: 8 pages, 4 figures; published in CQG; minor updates to match
published versio
Ceramic Substrates for High-temperature Electronic Integration
One of the most attractive ways to increase power handling capacity in power modules is to increase the operating temperature using wide-band-gap semiconductors. Ceramics are ideal candidates for use as substrates in high-power high-temperature electronic devices. The present article aims to determine the most suitable ceramic material for this application
Structural, elastic and thermal properties of cementite (FeC) calculated using Modified Embedded Atom Method
Structural, elastic and thermal properties of cementite (FeC) were
studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon
(Fe-C) alloys. Previously developed Fe and C single element potentials were
used to develop an Fe-C alloy MEAM potential, using a statistically-based
optimization scheme to reproduce structural and elastic properties of
cementite, the interstitial energies of C in bcc Fe as well as heat of
formation of Fe-C alloys in L and B structures. The stability of
cementite was investigated by molecular dynamics simulations at high
temperatures. The nine single crystal elastic constants for cementite were
obtained by computing total energies for strained cells. Polycrystalline
elastic moduli for cementite were calculated from the single crystal elastic
constants of cementite. The formation energies of (001), (010), and (100)
surfaces of cementite were also calculated. The melting temperature and the
variation of specific heat and volume with respect to temperature were
investigated by performing a two-phase (solid/liquid) molecular dynamics
simulation of cementite. The predictions of the potential are in good agreement
with first-principles calculations and experiments.Comment: 12 pages, 9 figure
Contrasting alterations to synaptic and intrinsic properties in upper-cervical superficial dorsal horn neurons following acute neck muscle inflammation
Background:
Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons.<p></p>
Results:
Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2?g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40??l of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2?hrs. Mice in each group were sacrificed at 2?hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63???1.05 vs. 24.64???0.91 and 25.87???1.32 pA, respectively). The amplitude (238???33 vs. 494???96 and 593???167 pA) and inactivation time constant (12.9???1.5 vs. 22.1???3.6 and 15.3???1.4?ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice.<p></p>
Conclusions:
Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are reduced two hours after acute muscle inflammation. We propose this time point represents an important transition period between peripheral and central sensitisation with reduced excitatory drive providing an initial neuroprotective mechanism during the early stages of the progression towards central sensitisation
Potential implications of coronary artery calcium testing for guiding aspirin use among asymptomatic individuals with diabetes.
ObjectiveIt is unclear whether coronary artery calcium (CAC) is effective for risk stratifying patients with diabetes in whom treatment decisions are uncertain.Research design and methodsOf 44,052 asymptomatic individuals referred for CAC testing, we studied 2,384 individuals with diabetes. Subjects were followed for a mean of 5.6 ± 2.6 years for the end point of all-cause mortality.ResultsThere were 162 deaths (6.8%) in the population. CAC was a strong predictor of mortality across age-groups (age <50, 50-59, ≥60), sex, and risk factor burden (0 vs. ≥1 additional risk factor). In individuals without a clear indication for aspirin per current guidelines, CAC stratified risk, identifying patients above and below the 10% risk threshold of presumed aspirin benefit.ConclusionsCAC can help risk stratify individuals with diabetes and may aid in selection of patients who may benefit from therapies such as low-dose aspirin for primary prevention
Recommended from our members
"Engaging with birth stories in pregnancy: a hermeneutic phenomenological study of women's experiences across two generations"
BACKGROUND: The birth story has been widely understood as a crucial source of knowledge about childbirth. What has not been reported is the effect that birth stories may have on primigravid women's understandings of birth. Findings are presented from a qualitative study exploring how two generations of women came to understand birth in the milieu of other's stories. The prior assumption was that birth stories must surely have a positive or negative influence on listeners, steering them towards either medical or midwifery-led models of care.
METHODS: A Heideggerian hermeneutic phenomenological approach was used. Twenty UK participants were purposively selected and interviewed. Findings from the initial sample of 10 women who were pregnant in 2012 indicated that virtual media was a primary source of birth stories. This led to recruitment of a second sample of 10 women who gave birth in the 1970s-1980s, to determine whether they were more able to translate information into knowledge via stories told through personal contact and not through virtual technologies
RESULTS: Findings revealed the experience of 'being-in-the-world' of birth and of stories in that world. From a Heideggerian perspective, the birth story was constructed through 'idle talk' (the taken for granted assumptions of things, which come into being through language). Both oral stories and those told through technology were described as the 'modern birth story'. The first theme 'Stories are difficult like that', examines the birth story as problematic and considers how stories shape meaning. The second 'It's a generational thing', considers how women from two generations came to understand what their experience might be. The third 'Birth in the twilight of certainty,' examines women's experience of Being in a system of birth as constructed, portrayed and sustained in the stories being shared.
CONCLUSIONS: The women pregnant in 2012 framed their expectations in the language of choice, whilst the women who birthed in the 1970s-1980s framed their experience in the language of safety. For both, however, the world of birth was the same; saturated with, and only legitimised by the birth of a healthy baby. Rather than creating meaningful understanding, the 'idle talk' of birth made both cohorts fearful of leaving the relative comfort of the 'system', and of claiming an alternative birth
Optimal Packings of Superballs
Dense hard-particle packings are intimately related to the structure of
low-temperature phases of matter and are useful models of heterogeneous
materials and granular media. Most studies of the densest packings in three
dimensions have considered spherical shapes, and it is only more recently that
nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs
(whose shapes are defined by |x1|^2p + |x2|^2p + |x3|^2p <= 1) provide a
versatile family of convex particles (p >= 0.5) with both cubic- and
octahedral-like shapes as well as concave particles (0 < p < 0.5) with
octahedral-like shapes. In this paper, we provide analytical constructions for
the densest known superball packings for all convex and concave cases. The
candidate maximally dense packings are certain families of Bravais lattice
packings. The maximal packing density as a function of p is nonanalytic at the
sphere-point (p = 1) and increases dramatically as p moves away from unity. The
packing characteristics determined by the broken rotational symmetry of
superballs are similar to but richer than their two-dimensional "superdisk"
counterparts, and are distinctly different from that of ellipsoid packings. Our
candidate optimal superball packings provide a starting point to quantify the
equilibrium phase behavior of superball systems, which should deepen our
understanding of the statistical thermodynamics of nonspherical-particle
systems.Comment: 28 pages, 16 figure
A Viscoelastic model of phase separation
We show here a general model of phase separation in isotropic condensed
matter, namely, a viscoelastic model. We propose that the bulk mechanical
relaxation modulus that has so far been ignored in previous theories plays an
important role in viscoelastic phase separation in addition to the shear
relaxation modulus. In polymer solutions, for example, attractive interactions
between polymers under a poor-solvent condition likely cause the transient
gellike behavior, which makes both bulk and shear modes active. Although such
attractive interactions between molecules of the same component exist
universally in the two-phase region of a mixture, the stress arising from
attractive interactions is asymmetrically divided between the components only
in dynamically asymmetric mixtures such as polymer solutions and colloidal
suspensions. Thus, the interaction network between the slower components, which
can store the elastic energy against its deformation through bulk and shear
moduli, is formed. It is the bulk relaxation modulus associated with this
interaction network that is primarily responsible for the appearance of the
sponge structure peculiar to viscoelastic phase separation and the phase
inversion. We demonstrate that a viscoelastic model of phase separation
including this new effect is a general model that can describe all types of
isotropic phase separation including solid and fluid models as its special
cases without any exception, if there is no coupling with additional order
parameter. The physical origin of volume shrinking behavior during viscoelastic
phase separation and the universality of the resulting spongelike structure are
also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev
Effect of additive concentration during copper deposition using EnFACE electrolyte
Copper deposition from solutions using high concentration of acid, metal ions and polyethylene glycol (PEG), and bis-(3-sulphopropyl) disulphide (SPS) and chloride ions (Cl-) is well known. A recent maskless micropatterning technology, which has the potential to replace the traditional photolithographic process, called EnFACE, proposed using an acid-free, low metal ion solution which is in direct contrast to those used in standard plating technology. In this work copper has been deposited using both standard electroplating solutions and those used in the EnFACE process. In the standard electrolyte 0.63 M CuSO4 and 2.04 M H2SO4 has been used, along with Gleam additives supplied by Dow Chemicals. For the Enface electrolyte, copper deposition has been carried out without any acid, and with different concentrations of additives between 17%-200% of those recommended by suppliers. 25 μm of metal has been plated on stainless steel coupons as suggested by ASTM, peeled off and subjected to ductility and resistance measurements. Scanning electron microscopy and electron back scatter diffraction have been carried out to determine the deposit morphology. It was found that copper deposits obtained from acid-free solutions containing low concentration of metal ion and additives produced copper deposits with properties which are comparable to those obtained from standard electrolytes. The optimum additive concentration for the EnFACE electrolyte was 50% of the supplier recommended value
- …
