Structural, elastic and thermal properties of cementite (Fe3C) were
studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon
(Fe-C) alloys. Previously developed Fe and C single element potentials were
used to develop an Fe-C alloy MEAM potential, using a statistically-based
optimization scheme to reproduce structural and elastic properties of
cementite, the interstitial energies of C in bcc Fe as well as heat of
formation of Fe-C alloys in L12 and B1 structures. The stability of
cementite was investigated by molecular dynamics simulations at high
temperatures. The nine single crystal elastic constants for cementite were
obtained by computing total energies for strained cells. Polycrystalline
elastic moduli for cementite were calculated from the single crystal elastic
constants of cementite. The formation energies of (001), (010), and (100)
surfaces of cementite were also calculated. The melting temperature and the
variation of specific heat and volume with respect to temperature were
investigated by performing a two-phase (solid/liquid) molecular dynamics
simulation of cementite. The predictions of the potential are in good agreement
with first-principles calculations and experiments.Comment: 12 pages, 9 figure