216 research outputs found

    Growth of Single Unit-Cell Superconducting La2x_{2-x}Srx_xCuO4_{4} Films

    Full text link
    We have developed an approach to grow high quality ultrathin films of La2x_{2-x}Srx_xCuO4_{4} with molecular beam epitaxy, by adding a homoepitaxial buffer layer in order to minimize the degradation of the film structure at the interface. The advantage of this method is to enable a further reduction of the minimal thickness of a superconducting La1.9_{1.9}Sr0.1_{0.1}CuO4_{4} film. The main result of our work is that a single unit cell (only two copper oxide planes) grown on a SrLaAlO4_4 substrate exhibits a superconducting transition at 12.5 K (zero resistance) and an in-plane magnetic penetration depth λab(0)\lambda_{ab}(0) = 535 nm.Comment: to be published in "Solid State Electonics" special issue, conference proceedings of the 9th Workshop on Oxide Electronics, St-Pete Beach, FL, 20-23 november 2002 : 12 pages 4 figures in preprint versio

    The Three-Dipole Kicker Injection Scheme for the ALS-U Accumulator Ring

    Full text link
    The ALS-U light source will implement on-axis single-train swap-out injection employing an accumulator between the booster and storage rings. The accumulator ring design is a twelve period triple-bend achromat that will be installed along the inner circumference of the storage-ring tunnel. A non-conventional injection scheme will be utilized for top-off off-axis injection from the booster into the accumulator ring meant to accommodate a large 300\sim 300~nm emittance beam into a vacuum-chamber with a limiting horizontal aperture radius as small as 88 mm. The scheme incorporates three dipole kickers distributed over three sectors, with two kickers perturbing the stored beam and the third affecting both the stored and the injected beam trajectories. This paper describes this ``3DK'' injection scheme and how it fits the accumulator ring's particular requirements. We describe the design and optimization process, and how we evaluated its fitness as a solution for booster-to-accumulator ring injection.Comment: 13 pages, 20 figure

    Collective pinning of a frozen vortex liquid in ultrathin superconducting YBa_2Cu_3O_7 films

    Full text link
    The linear dynamic response of the two-dimensional (2D) vortex medium in ultrathin YBa_2Cu_3O_7 films was studied by measuring their ac sheet impedance Z over a broad range of frequencies \omega. With decreasing temperature the dissipative component of Z exhibits, at a temperature T*(\omega) well above the melting temperature of a 2D vortex crystal, a crossover from a thermally activated regime involving single vortices to a regime where the response has features consistent with a description in terms of a collectively pinned vortex manifold. This suggests the idea of a vortex liquid which, below T*(\omega), appears to be frozen at the time scales 1/\omega of the experiments.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores

    Full text link
    We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in the vicinity of the vortex unbinding transition. The model is mapped onto an effective interacting vortex gas by a systematic perturbative elimination of all fluctuating degrees of freedom (amplitude {\em and} phase of the order parameter field) except the vortex positions. In the Coulomb gas descriptions derived previously in the literature, thermal amplitude fluctuations were neglected altogether. We argue that, if one includes the latter, the vortices still form a two- dimensional Coulomb gas, but the vortex fugacity can be substantially raised. Under the assumption that Minnhagen's generic phase diagram of the two- dimensional Coulomb gas is correct, our results then point to a first order transition rather than a Kosterlitz-Thouless transition, provided the Ginzburg-Landau correlation length is large enough in units of a microscopic cutoff length for fluctuations. The experimental relevance of these results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9

    The fully frustrated XY model with next nearest neighbor interaction

    Get PDF
    We introduce a fully frustrated XY model with nearest neighbor (nn) and next nearest neighbor (nnn) couplings which can be realized in Josephson junction arrays. We study the phase diagram for 0x10\leq x \leq 1 (xx is the ratio between nnn and nn couplings). When x<1/2x < 1/\sqrt{2} an Ising and a Berezinskii-Kosterlitz-Thouless transitions are present. Both critical temperatures decrease with increasing xx. For x>1/2x > 1/\sqrt{2} the array undergoes a sequence of two transitions. On raising the temperature first the two sublattices decouple from each other and then, at higher temperatures, each sublattice becomes disorderd.Comment: 11 pages, 5 figure

    Fluctuation-dissipation theorem and flux noise in overdamped Josephson junction arrays

    Full text link
    The form of the fluctuation-dissipation theorem for a resistively shunted Josephson juction array is derived with the help of the method which explicitely takes into acoount screening effects. This result is used to express the flux noise power spectrum in terms of frequency dependent sheet impedance of the array. The relation between noise amplitude and parameters of the detection coil is analysed for the simplest case of a single-loop coil.Comment: ReVTeX, 8 page

    Temperature and Frequency Dependence of Complex Conductance of Ultrathin YBa2Cu3O7-x Films: A Study of Vortex-Antivortex Pair Unbinding

    Full text link
    We have studied the temperature dependencies of the complex sheet conductance of 1-3 unit cell (UC) thick YBa2Cu3O7-x films sandwiched between semiconducting Pr0.6Y0.4Ba2Cu3O7-x layers at high frequencies. Experiments have been carried out in a frequency range between: 2 - 30 MHz with one-spiral coil technique, 100 MHz - 1 GHz frequency range with a new technique using the spiral coil cavity and at 30 GHz by aid of a resonant cavity technique. The real and imaginary parts of the mutual-inductance between a coil and a film were measured and converted to complex conductivity by aid of the inversion procedure. We have found a quadratic temperature dependence of the kinetic inductance, L_k^-1(T), at low temperatures independent of frequency, with a break in slope at T^dc_BKT, the maximum of real part of conductance and a large shift of the break temperature and the maximum position to higher temperatures with increasing frequency. We obtain from these data the universal ratio T^dc_BKT/L_k^-1(T^dc_BKT) = 25, 25, and 17 nHK for 1-, 2- and 3UC films, respectively in close agreement with theoretical prediction of 12 nHK for vortex-antivortex unbinding transition. The activated temperature dependence of the vortex diffusion constant was observed and discussed in the framework of vortex-antivortex pair pinning. PACS numbers: 74.80.Dm, 74.25.Nf, 74.72.Bk, 74.76.BzComment: PDF file, 10 pages, 6 figures, to be published in J. Low Temp. Phys.; Proc. of NATO ARW: VORTEX 200

    Dynamic Scaling of Magnetic Flux Noise Near the KTB Transition in Overdamped Josephson Junction Arrays

    Full text link
    We have used a dc Superconducting QUantum Interference Device to measure the magnetic flux noise generated by the equilibrium vortex density fluctuations associated with the Kosterlitz-Thouless-Berezinskii (KTB) transition in an overdamped Josephson junction array. At temperatures slightly above the KTB transition temperature, the noise is white for f<fξf<f_\xi and scales as 1/f1/f for f>fξf>f_\xi. Here fξξzf_\xi\propto\xi^{-z}, where ξ\xi is the correlation length and zz is the dynamic exponent. Moreover, when all frequencies are scaled by fξf_\xi, data for different temperatures and frequencies collapse on to a single curve. In addition, we have extracted the dynamic exponent zz and found z=1.98±0.03z=1.98\pm0.03.Comment: 5 pages, LaTeX (REVTeX) format, requires epsfig and amstex style files. 3 figures included. Tentatively scheduled for publication in Physical Review Letters, 18 March, 199

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method
    corecore