462 research outputs found

    Nanopores: synergy from DNA sequencing to industrial filtration - small holes with big impact

    Get PDF
    Nanopores in thin membranes play important roles in science and industry. Single nanopores have provided a step-change in portable DNA sequencing and understanding nanoscale transport while multipore membranes facilitate food processing and purification of water and medicine. Despite the unifying use of nanopores, the fields of single nanopores and multipore membranes differ - to varying degrees - in terms of materials, fabrication, analysis, and applications. Such a partial disconnect hinders scientific progress as important challenges are best resolved together. This Viewpoint suggests how synergistic crosstalk between the two fields can provide considerable mutual benefits in fundamental understanding and the development of advanced membranes. We first describe the main differences including the atomistic definition of single pores compared to the less defined conduits in multipore membranes. We then outline steps to improve communication between the two fields such as harmonizing measurements and modelling of transport and selectivity. The resulting insight is expected to improve the rational design of porous membranes. The Viewpoint concludes with an outlook of other developments that can be best achieved by collaboration across the two fields to advance the understanding of transport in nanopores and create next-generation porous membranes tailored for sensing, filtration, and other applications

    Exterior-Interior Duality for Discrete Graphs

    Full text link
    The Exterior-Interior duality expresses a deep connection between the Laplace spectrum in bounded and connected domains in R2\mathbb{R}^2, and the scattering matrices in the exterior of the domains. Here, this link is extended to the study of the spectrum of the discrete Laplacian on finite graphs. For this purpose, two methods are devised for associating scattering matrices to the graphs. The Exterior -Interior duality is derived for both methods.Comment: 15 pages 1 figur

    Nucleosomes in serum of patients with early cerebral stroke

    Get PDF
    Background: Nucleosomes are cell death products that are elevated in serum of patients with diseases that are associated with massive cell destruction. We investigated the kinetics of circulating nucleosomes after cerebral stroke and their correlation with the clinical status. Methods: In total, we analyzed nucleosomes by ELISA in sera of 63 patients with early stroke daily during the first week after onset. For correlation with the clinical pathology, patients were grouped into those with medium to slight functional impairment (Barthel Index BI >= 50) and those with severe functional impairment (BI = 50 showed a continuous increase in nucleosomes until day 5 (median: 523 arbitrary units, AU) followed by a slow decline. In contrast, patients with BI = 50 (497 AU; p = 0.031). Concerning the infarction volume, nucleosomes showed significant correlations for the concentrations on day 3 (r = 0.43; p = 0.001) and for the area under the curve (r = 0.34; p = 0.016). Conclusion: Even if nucleosomes are nonspecific cell death markers, their release into serum after cerebral stroke correlates with the gross functional status as well as with the infarction volume and can be considered as biochemical correlative to the severity of stroke. Copyright (c) 2006 S. Karger AG, Basel

    Prefetched Address Translation

    Get PDF
    With explosive growth in dataset sizes and increasing machine memory capacities, per-application memory footprints are commonly reaching into hundreds of GBs. Such huge datasets pressure the TLB, resulting in frequent misses that must be resolved through a page walk - a long-latency pointer chase through multiple levels of the in-memory radix tree-based page table.Anticipating further growth in dataset sizes and their adverse affect on TLB hit rates, this work seeks to accelerate page walks while fully preserving existing virtual memory abstractions and mechanisms - a must for software compatibility and generality. Our idea is to enable direct indexing into a given level of the page table, thus eliding the need to first fetch pointers from the preceding levels. A key contribution of our work is in showing that this can be done by simply ordering the pages containing the page table in physical memory to match the order of the virtual memory pages they map to. Doing so enables direct indexing into the page table using a base-plus-offset arithmetic.We introduce Address Translation with Prefetching (ASAP), a new approach for reducing the latency of address translation to a single access to the memory hierarchy. Upon a TLB miss, ASAP launches prefetches to the deeper levels of the page table, bypassing the preceding levels. These prefetches happen concurrently with a conventional page walk, which observes a latency reduction due to prefetching while guaranteeing that only correctly-predicted entries are consumed. ASAP requires minimal extensions to the OS and trivial microarchitectural support. Moreover, ASAP is fully legacy-preserving, requiring no modifications to the existing radix tree-based page table, TLBs and other software and hardware mechanisms for address translation. Our evaluation on a range of memory-intensive workloads shows that under SMT colocation, ASAP is able to reduce page walk latency by an average of 25% (42% max) in native execution, and 45% (55% max) under virtualization

    The non-classical nuclear import carrier Transportin 1 modulates circadian rhythms through its effect on PER1 nuclear localization

    Get PDF
    Circadian clocks are molecular timekeeping mechanisms that allow organisms to anticipate daily changes in their environment. The fundamental cellular basis of these clocks is delayed negative feedback gene regulation with PERIOD and CRYPTOCHROME containing protein complexes as main inhibitory elements. For a correct circadian period, it is essential that such clock protein complexes accumulate in the nucleus in a precisely timed manner, a mechanism that is poorly understood. We performed a systematic RNAi-mediated screen in human cells and identified 15 genes associated with the nucleo-cytoplasmic translocation machinery, whose expression is important for circadian clock dynamics. Among them was Transportin 1 (TNPO1), a non-classical nuclear import carrier, whose knockdown and knockout led to short circadian periods. TNPO1 was found in endogenous clock protein complexes and particularly binds to PER1 regulating its (but not PER2's) nuclear localization. While PER1 is also transported to the nucleus by the classical, Importin beta-mediated pathway, TNPO1 depletion slowed down PER1 nuclear import rate as revealed by fluorescence recovery after photobleaching (FRAP) experiments. In addition, we found that TNPO1-mediated nuclear import may constitute a novel input pathway of how cellular redox state signals to the clock, since redox stress increases binding of TNPO1 to PER1 and decreases its nuclear localization. Together, our RNAi screen knocking down import carriers (but also export carriers) results in short and long circadian periods indicating that the regulatory pathways that control the timing of clock protein subcellular localization are far more complex than previously assumed. TNPO1 is one of the novel players essential for normal circadian periods and potentially for redox regulation of the clock

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK
    corecore