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ABSTRACT
With explosive growth in dataset sizes and increasing machine
memory capacities, per-application memory footprints are com-
monly reaching into hundreds of GBs. Such huge datasets pressure
the TLB, resulting in frequent misses that must be resolved through
a page walk – a long-latency pointer chase through multiple levels
of the in-memory radix tree-based page table.

Anticipating further growth in dataset sizes and their adverse
affect on TLB hit rates, this work seeks to accelerate page walks
while fully preserving existing virtual memory abstractions and
mechanisms – a must for software compatibility and generality.
Our idea is to enable direct indexing into a given level of the page
table, thus eliding the need to first fetch pointers from the preceding
levels. A key contribution of our work is in showing that this can
be done by simply ordering the pages containing the page table in
physical memory to match the order of the virtual memory pages
they map to. Doing so enables direct indexing into the page table
using a base-plus-offset arithmetic.

We introduce Address Translation with Prefetching (ASAP), a
new approach for reducing the latency of address translation to a
single access to the memory hierarchy. Upon a TLB miss, ASAP
launches prefetches to the deeper levels of the page table, bypass-
ing the preceding levels. These prefetches happen concurrently
with a conventional page walk, which observes a latency reduc-
tion due to prefetching while guaranteeing that only correctly-
predicted entries are consumed. ASAP requires minimal extensions
to the OS and trivial microarchitectural support. Moreover, ASAP is
fully legacy-preserving, requiring no modifications to the existing
radix tree-based page table, TLBs and other software and hardware
mechanisms for address translation. Our evaluation on a range of
memory-intensive workloads shows that under SMT colocation,
ASAP is able to reduce page walk latency by an average of 25% (42%
max) in native execution, and 45% (55% max) under virtualization.

CCS CONCEPTS
• Computer systems organization → Serial architectures; •
Software and its engineering → Virtual memory; Allocation
/ deallocation strategies.
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1 INTRODUCTION
Massive in-memory datasets are a staple feature of many server
applications, including databases, key-value stores, and data analyt-
ics frameworks. The large – and rapidly growing – data footprints,
coupled with irregular access patterns, in many of these workloads
result in frequent TLB misses that require a walk of the operating
system’s radix tree-based page table. During the walk, the levels
of the radix tree-based page table (referred to as just page table, or
PT) must be traversed one by one, incurring high latency overhead
due to serialized accesses to the memory hierarchy.

Modern processors include several hardware features to acceler-
ate page table walks, including hardware walkers, multi-level TLBs
and translation caches. Despite these features, recent studies show
that up to 50% of the performance in big-data server workloads can
be lost to address translation [1]. The performance cost of address
translation is destined to increase in the future due to ever-growing
data working sets and larger memory capacities enabled by emerg-
ing memory technologies (e.g., Intel’s 3D XPoint [2]). Eventually,
these will necessitate the addition of yet another (fifth) level to
the radix page table that must be visited on each page table walk.
Indeed, the industry has already started preparing for the eventual
transition to five-level page tables [3].

Recent research proposals seeking to ameliorate the high cost
of address translation tend to fall into one of two categories: incre-
mental improvements to the existing virtual memory subsystem
and disruptive changes to it. Incremental approaches include ag-
gressive coalescing of Page Table Entries (PTEs) within TLBs [4–6]
and support for variable page sizes [7–11]. These techniques are
fundamentally limited by coalescing opportunities exposed by the
application and OS, as well as the capacity of the physical TLB
structures.

The disruptive proposals include the use of segment-based vir-
tualmemory [12–14] and application-specific address translation [15].
While attractive from a performance perspective, these proposals
require a radical re-engineering of the virtual memory subsystem
at both OS and hardware levels, which presents a difficult path to
adoption.

The challenge for future virtual memory systems is to enable
high-performance address translation for terabyte-scale datasets
without disrupting existing system stacks. As a step in that direction,
this work introduces Address Translation with Prefetching (ASAP)
– a new paradigm for reducing the latency of the iterative pointer
chase inherent in PT walks through a direct access to a given level
of the page table. With ASAP, a TLB miss typically exposes the
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latency of just a single access to the memory hierarchy regardless
of the depth of the page table.

To introduce ASAP as a minimally-invasive addition to the sys-
tem stack, we exploit the observation that applications tend to have
their virtual memory footprint distributed among only a handful
of contiguous virtual address ranges, referred to as Virtual Mem-
ory Areas (VMAs). Each allocated virtual page has a PTE, sitting
at the leaf level of the page table, and a set of intermediate page
table nodes that form a pointer chain from the root of the page
table to that PTE. Due to lazy memory allocation, PTEs associated
with a given VMA tend to be scattered in machine memory, with
no correlation between their physical addresses and that of the
associated virtual pages. Our insight is that if the PTEs were to
reside in contiguous physical memory and follow the same relative
order as the virtual pages that map to them, then there would exist
a direct mapping between the virtual page numbers in a VMA and
the physical addresses of their corresponding PTEs. Given such
a mapping, finding a PTE can be done through simple base-plus-
offset addressing into the PTE array, avoiding the need to access
preceding levels to find the PTE location. Similar logic applies to
intermediate levels of the radix tree, which also can be directly
indexed using base-plus-offset addressing provided the entries are
in contiguous memory and in sorted order with respect to virtual
addresses they map1.

Realizing this idea requires few changes to an existing system
stack. Indeed, VMAs are already explicitly maintained by modern
operating systems. The key missing OS functionality is ensuring
that the level(s) of the radix tree that are prefetch targets are allo-
cated in contiguous physical memory and the entries are in sorted
order. One way to achieve this is by directing the OS memory al-
locator to reserve, at VMA creation time, a contiguous region of
physical memory for the page table entries. The required memory
amounts to under 200MB for an application dataset of 100GB. On
the hardware side, a set of architecturally-exposed range registers
are needed to encode the boundaries of prefetchable VMAs. Any
virtual address that misses in the TLB is checked against the range
registers; on a hit, the target physical address is computed using a
base-plus-offset arithmetic, and a ASAP prefetch is issued for the
computed address. Multiple prefetches, to different levels of the
radix tree, can be launched in parallel.

Crucially, regardless of whether a prefetch is generated or not,
the PT radix tree is walked as usual. The full traversal of the radix
tree guarantees that only correct prefetched entries are consumed,
which helps minimize the risk of introducing a new security vul-
nerability into an existing architecture.

While ASAP falls short of completely eliminating page walk
latencies, since it exposes typically one access to the memory hier-
archy (other accesses can be overlapped, hence hiding their latency),
it has one major advantage: its minimally-invasive nature with re-
spect to the existing address translation machinery. Thus, with
ASAP, TLB misses trigger normal PT walks, which are accelerated
thanks to ASAP prefetches. Meanwhile, TLBs, hardware page table
walkers, the PT itself and the nested address translation mechanism
used for virtualization require absolutely no modifications in the
1 Sorted order means that if a virtual page number X comes before virtual page number
Y, then the radix tree entry for X resides at a physical address less than that of the
radix tree entry for Y.
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Figure 1: Linux/x86 Page Table as four-level radix tree.

presence of ASAP. Thus, ASAP can be seamlessly and gradually
introduced into existing systems with no disruption to either the
hardware or software ecosystem.

To summarize, this paper’s contributions are as follows:
• We quantitatively show that ever-growing datasets, colocated
workloads and virtualized deployments all pressure existing ad-
dress translation mechanisms. For example for memcached, by
increasing the dataset size by 5×, average page walk latency
grows by 1.2×. SMT colocation and virtualization increases page
walk overhead by 2.7× and 5.3×, respectively.

• We introduce Address Translation with Prefetching, which af-
fords direct access to target entries of the PT radix tree, thus
hiding the latency of the pointer-chasing PT walk. ASAP works
in concert with unmodified existing address translation mech-
anisms, is fully compatible with virtualization, does not allow
speculative usage of prefetched entries and requires minimally-
invasive modifications to the system stack.

• We demonstrate that ASAP is able to reduce average page walk
latency by 14% (20% max) and 39% (43% max) on average when
executed in native and virtualized environments, respectively.
Under SMT colocation, ASAP’s ability to shorten average page
walk latency increases to 25% average (42% max) for native and
45% average (55% max) for virtualized environments.

2 MOTIVATION
2.1 Virtual Memory Basics
A process’ page table (PT) maintains the information about how
the process’ virtual space is mapped onto physical memory. Each
PT entry (PTE) contains a per-page virtual-to-physical mapping as
well as auxiliary metadata, such as access permissions bits. Upon
each memory access, the CPU must find the corresponding PTE, de-
termine the address translation and validate the access type against
the permission bits.

On x86, the PT is organized as a four-level radix tree as shown in
Figure 1. The leaves of the radix tree, i.e., PT Level 1 (PL1), contain
PTEs. A given PTE contains a translation for all virtual addresses
that belong to a single OS page, as well as permission and other
bits that the OS uses. While the primary role of the PT is address
translation, the OS extensively uses PTs for other essential memory
management mechanisms, such as copy-on-write, accessed and
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Table 1: Increase in memcached page walk latency under vari-
ous scenarios. The data is normalized to native execution in
isolation with a 80GB dataset.

5× larger
dataset

SMT
colocation Virtualization Virtualization +

SMT colocation
1.2× 2.7× 5.3× 12.0×

dirty pages management and the I/O associated with memory-
mapped files. The general-purpose organization of the PT radix
tree allows to flexibly track both sparse and dense memory regions,
allowing reasonable look-up time and providing an efficient way
to monitor and analyze memory regions’ usage and evolution. To
minimize the number of levels in the tree, each intermediate node
of the tree has high fan-out having up to 512 child nodes that are
indexed with the corresponding subset of the address bits, so that
each PT level can be traversed with a single memory look-up.

Modern CPUs provide an ensemble of mechanisms to enable
fast address translations. Translation Lookaside Buffer (TLB) is a
hardware-managed structure that caches the virtual-to-physical
translations to frequently accessed data. When the TLB does not
contain the required translation (i.e., a TLBmiss occurs), a hardware
statemachine, called a pagewalker unit, brings themissing PT entry
from memory and installs the translation in the TLB, or raises a
page fault if the appropriate PTE is not found. Upon a TLB miss,
the page walker traverses the PT radix tree level-by-level chasing
up to four pointers in physical memory. The process of traversing
the PT radix tree, called a page (table) walk, can take hundreds of
CPU cycles depending on the footprint and locality characteristics
of the PT [16, 17]. To speed up the page walks, processors rely on
conventional cache hierarchy to naturally cache recently accessed
PT entries.

In addition to leveraging the conventional cache hierarchy, CPUs
feature dedicated Page Walk Caches (PWCs). PWCs contain fre-
quently traversed intermediate nodes of the radix tree, allowing
the page walker to bypass one or few levels of the PT on PWC
hits. However, due to silicon area and power constraints, PWCs are
highly limited in size, featuring just a few tens of entries [18].

To support virtualization, most commercial CPUs implement
nested page tables where host and guest OSes manage their own
sets of page tables [19]. When a process running in a guest OS
experiences a TLB miss, it has to perform a 2D walk of the nested
PT. In a 2D walk, each access to the guest PT node causes a full 1D
walk (i.e., 4 accesses to the memory hierarchy) in the host PT to
find the next guest PT node, and one final walk to access the data.
As a result, a single page walk can cause up to 24 memory accesses,
leading to much higher translation overhead even after extending
page walk caches for both dimensions of the 2D walk [20].

2.2 Performance Cost of Address Translation
To estimate translation overheads on modern hardware, we evalu-
ate a number of popular benchmarks and big memory applications
running in isolation and in colocation with a memory-intensive co-
runner (see §4 for details of the methodology). Figure 2 shows that
for native applications, page walks account for up to 82% of CPU
cycles due to large memory footprints and, depending on the appli-
cation, irregular memory access patterns. This combination tends
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Figure 3: Average page walk latency in various scenarios.

to result in poor spatio-temporal locality in the address stream,
which all existing mechanisms for accelerating address translation
(TLBs, PWCs, processor’s cache hierarchy) exploit to get good per-
formance. Under virtualization, the overhead of address translation
can be as high as 93% of CPU cycles due to the added cost of the
nested page walk.

Figure 3 demonstrates that, despite all existing hardware sup-
port, page walk latency may climb to hundreds of cycles. Table 1
summarizes the trend by focusing on the memcachedworkload. Var-
ious factors can affect the page walk latency, including the size of
the dataset, interference caused by a co-running application and
virtualization. If running on a core in isolation and in native mode,
memcached has average page walk latency of 44 cycles. Increas-
ing the dataset size of memcached from 80GB to 400GB causes the
average page walk latency of memcached to climb by 1.2×. Colo-
cation with another application on the same core (see Section 4
for methodology details) increases the page walk latency by 2.7×
(to 120 cycles). Virtualization (without colocation) increases the
page walk latency of memcached by 5.3×. Finally, virtualization
with colocation propels the page walk latency of memcached to 527
cycles, a whopping 12× increase.

2.3 Can Large Pages Help?
One of the least intrusive, with respect to the PT radix tree, innova-
tions in memory management has been the introduction of large
pages. This approach allows to replace 512 contiguous small pages
with a large page of the equivalent size. The hierarchical structure
of the PT radix tree naturally supports large pages, requiring mod-
est hardware and software extensions. For example, in Linux/x86,
a large page of 2MB is managed by a single entry in the PL2 level
of the PT, replacing the corresponding 512 independent PT entries
in the PL1 level.

Unfortunately, even the least intrusive changes in the virtual
memory mechanisms carry numerous implications on the overall
system behavior and introduce performance pathologies. On x86,

3



MICRO-52, October 12–16, 2019, Columbus, OH, USA Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot

the introduction of 2MB and 1GB large pages revealed an ensemble
of unexpected problems. Araujo et al., for example, show that the
use of large pages leads to memory fragmentation in multi-tenant
cloud environments [21]. Under high memory fragmentation, Linux
often has to synchronously compact the memory before a memory
chunk of the necessary size can be allocated, introducing high
average and tail latencies. Kwon et al. showcase a problem in unfair
large pages distribution among multiple applications sharing a
single server, as well as point to increasing memory footprint due
to the internal fragmentation [8]. For instance, the authors show
that redis increases its memory footprint by 50% when using large
pages and may start swapping even with a carefully provisioned
physical memory.

While being a simple and natural idea, the systems commu-
nity has struggled with wide adoption of large pages. The root of
the problem is the lack of memory management flexibility (e.g.,
copy-on-write in OS, deduplication and ballooning optimizations
in hypervisor [9, 22]) with large pages as compared to fine-grain
paging.

2.4 Disruptive Proposals are Undesirable
With rapidly increasing application dataset sizes and the associ-
ated growth in translation overheads [23], some of the recent work
argues for a complete replacement of the PT radix tree and the
address translation mechanisms that are designed around it. One
set of proposals has suggested using large contiguous segments of
memory instead of fine-grained paging for big-data server appli-
cations [12–14]. These proposals are based on observations that
server applications tend to allocate all of their memory at start-up
and make little use of page-based virtual memory mechanisms,
such as swapping and copy-on-write [12–14].

While tempting from a performance perspective, there are sev-
eral major issues with the segment-based approach that prevent its
adoption. First, segment-based memory relies on specific charac-
teristics of a single class of applications, whereas an OS has to be
general-purpose. Hence, the OS needs to efficiently support both
the conventional page-based approach and the segment-based one.
Supporting two separate translation mechanisms makes the mem-
ory subsystem heterogeneous and more complicated to manage.
Second, not all big-memory applications can operate on a small
number of segments, as noted by [6], while supporting a large num-
ber of segments is impractical in hardware, as noted in the original
paper [14].

Another challenge with segment-based memory management is
that, in practice, finding large contiguous physical memory regions
can be challenging in the presence of memory cell failures. Such
failures are exposed to the OS, which monitors the health of the
available physical memory, detects the faulty cells, and retires the
affected physical memory at granularity of small pages [24, 25].
While a recent study at Facebook already reports increasing mem-
ory error rates due to DRAM technology scaling to smaller feature
sizes [26], emerging memory technologies, such as 3D XPoint, are
likely to have a higher incidence of memory cell failures due to
lower endurance as compared to DRAM [27, 28]. Hard memory
faults dramatically complicate memory management not only with
segments but also with large pages; e.g., by introducing an extra

level of abstraction [29] and new software and hardware machinery
(e.g., per-segment Bloom filters for pages with hard faults [13]).

Other prior work investigated application-specific address trans-
lation, allowing the developers to choose address translation meth-
ods appropriate for their applications [15]. However, these ap-
proaches expose the complexity of virtual memory programming
to the application developers or, if implemented at the system level,
lead to an increase in OS memory management complexity. Both
greatly impede the adoption of these ideas in the wild.

2.5 Incremental Approaches are Insufficient
To avoid the disruption to existing system stacks, some researchers
have proposed microarchitectural and OS-based techniques to ac-
celerate address translation while retaining compatibility with the
conventional PT and radix tree mechanisms. One such group of
mechanisms seeks to leverage existing contiguity in both virtual
and physical space to coalesce multiple PTEs into a single TLB
entry so as to increase TLB reach [4, 5].

Problematically, the effectiveness of coalescing-based approaches
is fundamentally constrained by the size of a TLB structure. An-
other limitation is that coalescing relies on having contiguity in the
physical memory space of an application; however, ensuring such
contiguity is not an objective of existing memory allocators, such
as the Linux buddy allocator [6]. As a result, application contiguity
characteristics can vary greatly across different runs of the same ap-
plication, making solutions that rely on PTE coalescing unreliable
from a performance perspective.

Another set of techniques focus on improving TLB efficiency
in the presence of multiple page sizes. A straight-forward TLB
design that statically partitions capacity across a set of supported
page sizes will suffer from poor utilization when one page size
dominates. Moreover, because the size of the page that belongs to a
particular memory access is unknown before a TLB look-up, all of
the TLB structures need to be checked, increasing TLB hit latency
and energy consumption. While recent works have attacked these
problems [7, 10, 11], their effectiveness is fundamentally limited by
the capacity of the TLB structure.

2.6 Virtual Memory Tomorrow
Devised decades ago, the page table and radix tree-based indexing
mechanism have formed the basis for all of modern address trans-
lation machinery. The fact that these mechanisms have survived
for so long, and have been extended – rather than replaced – to
support virtualization, speaks to their flexibility and the importance
of backward compatibility.

With the unrelenting growth in application dataset sizes [23]
and the advent of high-capacity storage-class memories [2, 30, 31],
future systems will have to contend with much higher pressure on
address translation structures, including TLBs and caches. More-
over, to accommodate large memory footprints, the industry has
started preparing to add an additional, fifth, level to the page ta-
ble [3]. The extra level will increase the footprint of the radix tree,
making it more challenging to capture in processor’s caches, and
will also increase the depth, and hence the latency, of the page walk.
The time is ripe for new ideas on accelerating address translation
without disrupting existing software stacks.
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3 PREFETCHED ADDRESS TRANSLATION
3.1 Overview
In this work, we aim to lower page walk costs in a non-disruptive
manner, retaining full compatibility with the radix tree-based page
table and the existing address translation machinery (TLB, page
walk caches, etc). Because the page walk time is dominated by a
pointer chase through the levels of the page table (Figure 4a), we
introduce Address Translation with Prefetching – a mechanism to
prefetch page table nodes ahead of the page walker. We focus on the
deeper levels of the PT (PL1 and PL2) as the most valuable prefetch
targets, because the fourth (PL4) and third (PL3) PT levels are small
and efficiently covered by the Page Walk Caches and the regular
cache hierarchy. Meanwhile, the second (PL2) and the first (PL1)
levels are much larger and often beyond reach for on-chip caching
structures for big datasets. For instance, for a 100GB dataset, the
footprint of the PT levels is 8B, 800B, 400KB and 200MB for PL4,
PL3, PL2 and PL1, respectively.

To reduce the page walk latency, we propose issuing prefetches
for the PL1 and PL2 levels concurrently with the page walker ini-
tiating its first access (i.e., to PL4, which is the root of the PT), as
demonstrated in Figure 4b. Triggered on a TLB miss, the prefetcher
needs to determine the physical addresses of the target PT nodes
in both PL1 and PL2 levels of the page table. This is accomplished

via a simple base-plus-offset computation, enabled through an or-
dering of memory pages occupied by the page table as discussed
below. Prefetches travel like normal memory requests through the
memory hierarchy and are placed into the L1-D, thus maximally
repurposing the existing machinery.

Critically, with ASAP, the page walker performs the full walk
as usual, consuming the prefetched entries. By executing the page
walk, ASAP guarantees that only correct entries are consumed,
which enables proper handling of page faults and reduces the risk
of introducing a new security vulnerability into an existing archi-
tecture.

To introduce ASAP as a natural addition to the existing system
stack, we exploit the observation that a process operates on few
contiguous virtual address ranges. One important example of such
a range is the heap, which forms a large contiguous region in the
virtual space of a process. Each allocated virtual page inside a
virtual address range has a PTE at the leaf level of the PT, reached
through a chain of PT nodes, one per PT level (Figure 4a). Thus,
there exists a one-to-one mapping between a virtual memory page
and a corresponding PT node at each level of the PT radix tree.
However, this correspondence exists only in the virtual space, but
not in the physical space, due to the buddy allocator that scatters the
virtual pages, including those of the PT, across physical memory.

To enable ASAP, there needs to be a direct mapping from a vir-
tual page to a corresponding PT node in physical memory (shown
by the grey Prefetch arrows in Figure 4b). Our insight is that if the
PT nodes for a given level of the page table in physical memory
follow the same order as the virtual pages they map to, then a direct
index into the PT array is possible using simple base-plus-offset
computation. The solution is to have the OS induce the required
ordering for the PT nodes in physical memory. As discussed be-
low, this requires straight-forward extensions in the kernel and
absolutely no modifications to the actual page table structure.

In the remainder of the section, we discuss key aspects of ASAP
including existing contiguity in the virtual address space, how conti-
guity can be induced in the radix tree-based page table, architectural
support for ASAP, and virtualization extensions.

3.2 Virtual Address Contiguity
Virtual addresses in page tables appear as a set of contiguous virtual
ranges that are defined by the way the applications create and use
virtual address spaces, such as heap and stack. In Linux, the OS
manages these ranges using a virtual memory area (VMA) tree
that contains the information about all non-overlapping virtual
address ranges (further referred to as VMAs) allocated to a process.
Other OSes have data structures analogous to Linux VMA tree, e.g.,
Virtual Address Descriptor (VAD) tree in Windows [32].

The applications we studied allocate few VMAs that stay stable
during their execution. Our results (Table 2) show that a small
number of VMAs cover 99% of the application footprint. These few
large VMAs are attributed to heap and memory-mapped regions
that contain the application data structures that are the primary
causes of page walks. Meanwhile, small VMA mostly represent
dynamically-linked libraries and the stack, which are frequently
accessed and rarely cause TLB misses due to high temporal reuse.
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Table 2: Total number of VMAs, number of VMAs that cover
99% of footprint, number of contiguous regions in physical
memory, and total number of PT pages per application.

Application Total
VMAs

VMAs for 99%
footprint coverage

Contig. phys.
regions

PT page
count

canneal 18 4 487 2842
mcf 16 1 626 3189
pagerank 18 1 2076 38504
bfs 14 1 4285 66015
mc80 26 6 1976 45878
mc400 33 13 5376 213097
redis 7 1 3555 44171

PL4

Sorted PT levels allow prefetch 
via base+offset computation

PL3 PL2 PL1

Data pages scattered in physical memory;
OS memory allocator enjoys full flexibility

Virtual address space

… …
VMA 0 VMA 1

Physical address space

offset>>s2

PL2_base PL1_base

offset>>s1

Figure 5: Virtual and physical memory layout with ASAP.
The pages that contain the PT are color-coded according to
their corresponding VMAs.

3.3 Inducing Contiguity in the Page Table
As explained in the previous section, the virtual address space en-
joys high contiguity. However, when it comes to physical memory,
the pages of the PT are often scattered. For the applications we
studied, the number of contiguous physical memory regions that
store the PT nodes can reach into thousands (Table 2). The reason
for such lack of locality in the page table is that PT nodes, just as
any other data in Linux, are lazily allocated in pages whose position
in physical memory is determined by the Linux buddy allocator.
The buddy allocator optimizes for allocation speed, allocating pages
on demand in first available slots in physical memory. The result
is a complete lack of correspondence between the order of virtual
pages within a VMA and the physical pages containing PT nodes.

To enable ASAP, the OS needs to guarantee that PT nodes within
each PT level are located in contiguous physical memory according
to the their corresponding virtual page numbers within a VMA of
the process, conceptually shown in Figure 4b. There are two ways to
achieve such placement of PT nodes in physical memory: first is to
deploy a custom allocator to enforce page ordering and contiguity
in physical memory for the PT, and second is to sort the already
allocated PT nodes in the background. While both approaches are
plausible, we focus on the former as a concrete case study.

In Linux, a VMA tree contains all ranges of virtual addresses
(further referred to as VMAs) that the OS provides to the process

PT node access

TLB

Range 
RegistersPT walker

Page walk cache

Cache hierarchy

TLB miss

Prefetch 
PT nodes

PL2_base PL1_base

PL2_base PL1_base

…

base + offset

PL2 node 
physical address

Next PT node pointer

Start 0
End 0

Start N
End N

V
M

A
 0

V
M

A
 N

…

Per-VMA tags

base + offset

PL1 node 
physical address

H
it

?

PWC hit PWC miss

V
M

A
 0

V
M

A
 N

Unmodified hardware ASAP hardware extension

Figure 6: Architectural support for ASAP.

per its request. According to the demand paging and lazy allocation
principle, which is employed in most operating systems, including
Linux, the VMAs are created immediately, e.g., upon an mmap system
call, whereas PT nodes are created and populated only upon a first
access to the corresponding virtual addresses, which cause page
faults that lead to creation of the corresponding virtual-to-physical
mappings in the PT. Hence, each VMA defines how many mappings
will eventually appear for it in the PT, and what portion of the page
table the VMA will occupy in physical memory.

Since the OS knows the beginning of each VMA in the virtual
space and its size, the OS can reserve contiguous physical memory
regions for PT nodes at each level of the page table ahead of the
eventual demand allocation of page table entries. When these are
(lazily) populated, the OS can further enforce the ordering of PT
nodes within each PT level to guarantee that it matches the order-
ing of the virtual pages mapping to them. Doing so ensures both
contiguity and ordering of PT pages in machine memory, which
enables direct indexing into a given level of the page table.

Figure 5 shows the layout of virtual and physical address spaces
with ASAP. The virtual space layout and the layout of data pages
in physical memory remains the same as in vanilla Linux; the only
change required by ASAP is the introduction of contiguous physical
memory regions for pages containing PT nodes.

Cost. Unlike prior work on direct segment addressing [12–14],
which requires allocating the entire dataset of an application within
large contiguous physical regions (see Section 2.4 for a discussion of
the drawbacks), ASAP requires contiguity in only a tiny portion of
the physical memory thanks to the compact nature of the PT radix
tree. For example, for an application with a 100GB dataset, PL4 and
PL3 levels together fit in a single 4KB page, PL2 requires 400KB,
and the leaf PL1 level necessitates around 200MB. This example
shows that the physical memory footprint that must be guaranteed
contiguous by the OS to hold the sorted PT nodes amounts to a
mere 0.2% of an application’s dataset size.

3.4 Architectural Support
Figure 6 shows the microarchitecture of ASAP. As the figure shows,
ASAP non-disruptively extends the TLB miss-handling logic. For
each VMA that is a prefetch target, ASAP requires a VMA descriptor
consisting of architecturally-exposed range registers that contain
the start and end addresses of the VMA, as well as the base physical
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addresses of the contiguous regions containing the 1st (PL1) and
2nd (PL2) PT levels mapping the VMA. ASAP’s VMA descriptors
are part of the architectural state of the hardware thread and are
managed by the OS in the presence of the events like a context
switch or interrupt handling. According to the results from §3.2,
tracking 8–16 VMAs is enough to cover 99% of thememory footprint
for the studied benchmarks.

With ASAP, each TLB miss triggers a lookup into the range
registers, which happens in parallel with the activation of the page
walker. The lookup checks the virtual address of the memory op-
eration against the tracked VMA ranges; on a hit, target prefetch
addresses in PL1 and PL2 are calculated with a base-plus-offset
computation using each level’s respective base physical addresses
and the offset bits from the triggering virtual address. Note that
the actual offset differs between PL1 and PL2, and is derived for
each of these PT levels by simply shifting the incoming offset bits
by a fixed amount (labeled s1 and s2 in Figure 6). The prefetch
requests to the two target PT nodes are then issued to L1-D if it has
a port available. As a result, the cache lines containing PT nodes
are loaded into the L1-D, from which they will be subsequently
accessed by the page walker.

An important aspect of ASAP is that it requires no modifications
either to the cache hierarchy or to the page walker. ASAP leverages
existing machinery for buffering the outstanding prefetch requests
in L1-D’s MSHRs and buffering the data brought in by ASAP in
the L1-D itself. Prefetches are thus best-effort (e.g., not issued if an
MSHR is not available). In contrast to data prefetchers, ASAP does
not noticeably increase memory bandwidth pressure since ASAP
prefetches are nearly always correct (except in the special cases of
"holes" in a PT range, as discussed in §3.7.2), effectively converting
the page walker’s demand misses into prefetches.

3.5 ASAP for Large Pages and Five-Level PT
Thanks to the recursive structure of the PT radix tree, no modifica-
tions are required to support large pages of any size. Translations
that correspond to large pages are stored one or two levels above
from the leaf (PL1) PT level. For example, page table entries for 2MB
pages are stored in the 2nd (PL2) level of the PT radix tree. Since
the size of the page is unknown before the page walker inspects
the ultimate PT node (e.g., the PT node at PL2 contains a dedicated
bit that distinguishes a 2MB page PTE from a pointer to the PL1
node that contains a 4KB page entry), some of the prefetch requests
may be redundant (e.g., a request to the PL1 node if 2MB pages are
used).

With the advent of five-level page tables, ASAP can be naturally
extended to issue an additional prefetch request to the added PT
level.

3.6 ASAP for Nested Walks
In virtualized environment, ASAP can be applied in both guest
and host dimensions, which presents a significant acceleration
opportunity due to the high latency of nested page walks. Under
virtualization, the radix tree levels of both guest PT (gPT) and host
PT (hPT) targeted by ASAP must be contiguous and ordered in
the host physical memory. Similar to the native setup, this must be
ensured by the hypervisor and guest OS.
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Figure 7: Nested prefetched address translation. Accesses are
enumerated according to their order in a 2D page walk.

In the general case, 2D walk starts by reading the gCR3 register
that stores the location of the gPT root, followed by consecutive
1D walks in the host to access each of the gPT entries. Figure 7
shows the 2D walk with ASAP prefetching, assuming ASAP is
configured to prefetch the 2nd (PL2) and 1st (PL1) levels of gPT
and hPT. Immediately at the 2D walk start, ASAP issues prefetch
requests to the gPT nodes in the PL2 and the PL1 levels to overlap
accesses 15 and 20 with the previous ones. Then, just as the page
walker starts the 1D walk in the host (steps 1–4), ASAP issues
prefetch requests to the PL2 and PL1 levels of the hPT using the
guest physical address of the gPT root. The process repeats for each
1D walk in host, namely steps 6–9, 11–14, 16–19, 21–24.

From the software perspective, to enable ASAP-accelerated 2D
walks, the guest OS requires minimal modifications. Similar to the
native case, the guest OS needs to ensure contiguity in the physical
memory regions storing PL1 and PL2 levels of the page table. Under
virtualization, the guest must make these requests to the hypervisor,
and notify the hypervisor when any of these regions need to be
extended. Thus, on x86, the guest OS’ system calls that change the
contents of the (guest) VMA tree must execute vmcall instructions
to trigger the transition into the hypervisor so that it can invoke
the host OS’ PT allocator to guarantee the region’s contiguity in
both host and guest physical spaces.

From the hardware perspective, accelerating address translation
in the host with ASAP requires additional range registers. Crucially,
we observe that in Linux/KVM virtualization, from the perspective
of the host OS, an entire guest VM is a process that has a single
virtual address region [19]. Hence, a single set of range registers is
sufficient to map the guest VM (including the target page table) as
a host VMA, allowing acceleration of walks in the host dimension
(e.g., steps 1–4 or 21–24 in Figure 7). Meanwhile, the number of
VMAs in the guest OS is unaffected by virtualization, requiring the
same number of range registers for ASAP acceleration as in the
native environment.

3.7 Discussion
3.7.1 Page Fault Handling. Since most OS’es follow the lazy allo-
cation principle, the PT is populated with mappings on demand,
i.e., the first access to a non-allocated page causes a page fault,
leading to the mapping being created in the PT. Thus, both with
and without ASAP, some of the PT nodes corresponding to a VMA
region will stay uninitialized until the first access happens.
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Table 3: Workloads used for evaluation.

Name Description
mcf SPEC’06 benchmark (ref input)
canneal PARSEC 3.0 benchmark (native input set)
bfs Breadth-first search, 60GB dataset (scaled from Twitter)
pagerank PageRank, 60GB dataset (scaled from Twitter)

mc Memcached, in memory key-value cache, 80GB and
400GB datasets

redis In-memory key-value store (50GB YCSB dataset)

In this presence of ASAP, this behavior does not impact correct
page fault handling. Thus, when the page walker performs a page
walk that eventually triggers a page fault, ASAP still issues prefetch
requests to PT nodes in PL1 and PL2. These prefetches accelerate
page fault detection by the hardware walker.

3.7.2 VMAs Evolution. Most VMAs in the VMA tree belong to well-
defined process segments, such as heap, stack, memory-mapped
files and dynamic libraries. The largest data segments – the ones
that hold the application dataset, such as heap and the memory-
mapped segments – can grow or shrink in a pre-determined direc-
tion as the process continues its execution. For instance, upon a
malloc call, the allocator may grow the heap segment by invok-
ing brk/sbrk system calls to extend the segment towards higher
virtual addresses.

To extend the contiguous reserved PT regions in the event of a
VMA extension, the OS needs to request memory from the buddy
allocator next to the boundary of the existing region. Unfortunately,
the buddy allocator does not optimize for contiguous region alloca-
tions, usually providing the first best fit chunk of physical memory.
Furthermore, the physical memory next to the border of the region
can be already allocated (e.g., for regular data pages). To avoid
changing the buddy allocator mechanisms, we argue for asynchro-
nous regions extension in the background2, triggered by a system
call that extends the corresponding VMA. Thanks to lazy PT popu-
lation with newly allocated mappings, the OS has time to clear the
adjacent memory area, moving already allocated pages elsewhere
in physical memory.

In the unlikely event that the OS cannot free some of the pages
in the region extension area (e.g., if the pages are pinned), it can
allocate some of the PT pages apart from the reserved region in
the VMA. Thanks to the pointer-based structure of the PT radix
tree, the page walker will be able to correctly walk the page table
as usual. The only consequence of such “holes” in the reserved PT
regions is that the page walks that target the PT entries located in
the “holes” would not be accelerated by ASAP.

4 METHODOLOGY
To evaluate ASAP, we employ a methodology similar to prior

work in this space, which reports TLB-miss induced overheads and
page walk latencies [12, 14, 15, 18]. We measure TLB miss over-
heads on real hardware using performance counters. Given our
focus on long-running big-memory workloads, we find full-system

2A similar mechanism is employed by Transparent Hugepage Support [33] daemon that
can compact pages per a request/hint communicated by the application via madvise
system call (e.g., MADV_MERGEABLE advice value).

Table 4: Parameters of the hardware platform used for per-
formance counters studies and memory trace generation.

Parameter Value/Description

Processor Dual socket Intel(R) Xeon(R) E5-2630v4 (BDW)
2.40GHz 20cores/socket, SMT

Memory size 160GB/socket (768GB/socket for
memcached_400GB)

Hypervisor QEMU 2.0.0, 128GB RAM guest
Guest/host
operating system Ubuntu 14.04.5, 4.4.0-31-generic kernel

Table 5: Parameters used in simulation.

Parameter Value/Description
L1 I/D-TLB 64 entries each, 8-way associative
L2 S-TLB 1536 entries, 6-way associative

Page walk
caches

3-level Split PWC: 2 cycles, PL4 - 2 entries, fully
assoc.; PL3 - 4 entries, fully assoc.; PL2 - 32 entries,
4-way assoc. (similar to Intel Core i7 [35])
Virtualization: one dedicated PWC for guest PT, one
for host PT.

L1 I/D cache 32KB, 8-way associative, 4 cycles
L2 cache 256KB, 8-way associative, 12 cycles
L3 cache 20MB, 20-way associative, 40 cycles
Main memory 191 cycles access latency

simulations intractable for projecting end-to-end performance. In-
stead, we report average page walk latency obtained from a detailed
memory hierarchy simulator that models processor caches, page
walk caches and TLBs.

Our evaluation primarily focuses on small (4KB) pages, since fine-
grain memory management delivers greater flexibility, better mem-
ory utilization and better performance predictability (Section 2.3).
We explore the effect of large pages in Section 5.2.

Benchmarks. We select a set of 6 diverse applications that exhibit
significant TLB pressure (6-85% L2 TLB miss ratio) from SPEC’06,
PARSEC 3.0, graph analytics (atop of Galois framework [34]) and
in-memory key-value stores. For the graph applications (bfs and
pagerank), we used a 60GB synthetic dataset with edge distribution
modeled after a (smaller) publically-available Twitter dataset. The
applications and datasets are listed in Table 3.

Measuring the overhead of TLB misses. We measure the fraction
of execution time when the page walker was active. This is done
on a real system, whose parameters are listed in Table 4. Using the
Linux perf tool, we collect the values of two performance counters
reporting (1) cycles when page walker is active and (2) total number
of execution cycles. We calculate TLB miss overhead as the number
of cycles when page walker is active to total execution cycles.

Measuring page walk latency. As a primary evaluation metric for
ASAP, we use page walk latency. We functionally model memory
hierarchy of an Intel Broadwell-like processor using a simulator
based on DynamoRIO [36]. The parameters of the simulated CPU
are shown in Table 5.

On every TLB miss, we simulate a page walk using application’s
page table dump, captured through an in-house kernel module. For
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Figure 9: Fraction of page walk requests served by each level
of the memory hierarchy for a given PT level.

each access to the memory hierarchy during a page walk, we trace
and record the levels of the memory hierarchy involved in serving
the access. Since a page walk is a serial pointer chasing operation,
we calculate the page walk latency by adding up access latencies of
all memory hierarchy levels involved in each page walk trace.

Workload colocation. In modern datacenter and cloud environ-
ments, applications are aggressively colocated for better CPU and
memory utilization [37]. Indeed, Google reports that they aggres-
sively colocate different applications on SMT cores as a routine
practice [38].

We simulate a colocation scenario on a dual-threaded SMT core
by placing a memory-intensive co-runner thread alongside the
studied application thread. To avoid biasing the study by the id-
iosyncrasies of any one application, we use a synthetic co-runner
that issues one request to a random address for each memory access
by the application thread. Colocation pressures the cache hierarchy,
which is used to cache page table entries (from both intermediate
and leaf nodes of the page table), hence increasing the average walk
duration.

Note that we do not model contention in the TLBs and PWCs
stemming from colocation. Contention in these structures would
result in more/longer page walks, thus increasing the opportunity
for ASAP. Thus, our speed-up estimates for ASAP under colocation
are conservative.

Virtualization. To assess ASAP in a virtualized environment, we
record the guest PT contents using an in-house kernel module. On
the host side, we model the layout of the PT in a system without

ASAP by mimicking the Linux buddy allocator’s behavior by ran-
domly scattering the PT pages across the host physical memory. To
model ASAP, we maintain PL1 and PL2 pages in contiguous regions
in the host.

5 EVALUATION
5.1 ASAP in Native Environment
We first evaluate ASAP under native execution, first without then
with colocation. We evaluate several configurations. The first is
the baseline, which does not employ ASAP and corresponds to a
design representative of existing processors. We study two ASAP
configurations: the first of these (referred to as P1) prefetches only
from PL1 level of the page table; the second (referred to as P1+P2)
prefetches from both PL1 and PL2 levels.

5.1.1 ASAP in Isolation. Figure 8a shows the average page walk
latency for the baseline and both ASAP configurations when the
application executes without a corunner. In the baseline, page walk
latency varies from 34 to 101 cycles, with an average of 51 cycles.
The largest latency is experienced by redis.

Prefetching only PL1 reduces average page walk latency by 12%
over the baseline (to 45 cycles). In absolute terms, the largest ob-
served latency reduction is on redis, whose page walk latency
drops by 15 cycles. In contrast, mcf experiences only 1 cycle re-
duction in average page walk latency. The difference in efficacy
of ASAP for these applications can be explained by understanding
from which level of the memory hierarchy page walk requests are
served.

Figure 9 shows the fraction of requests satisfied by a given level
of the memory hierarchy for each level of the page table traversed in
a walk. In the case of mcf running in isolation (Figure 9a), requests
to all levels except PL1 mostly hit in PWC and are satisfied within
a few cycles; meanwhile, requests to PL1 take considerably longer,
with nearly a third of requests hitting in L2, LLC or main memory.
Because the page walker traverses PL1 through PL3 so quickly
thanks to PWC hit, ASAP has little opportunity to hide latency on
this workload. Meanwhile, redis hits in PWCmuch less frequently
as shown in Figure 9b; in particular, a significant fraction of page
walker’s requests to PL2 reaches the L2 or LLC, which provides
ASAP with an opportunity to overlap its prefetch to PL1 with the
page walk to previous levels.

Despite the fact that a considerable number of page walks can
hit in PWC, increasing PWC capacity does not substantially re-
duce page walk latency. We observe that when running in isolation,
doubling the capacity of each PWC with respect to the default
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configuration provides a negligible page walk latency reduction –
2% and 3% in native and virtualized scenarios, respectively. These
results corroborate industry trends: PWC capacity has not grown
beyond 32 entries per level in several recent Intel processor genera-
tions from Westmere to Skylake [39].

Prefetching from PL2 in addition to PL1 reduces average page
walk latency by 14% over the baseline – a small improvement over
prefetching just PL1. The reason for such limited benefit of prefetch-
ing from an additional level of the page table can be understood by
examining Figures 9a and 9c). Because the vast majority of requests
to PL3 and PL4 hit in PWC or the L1-D, there is little opportunity
for ASAP to overlap these accesses with prefetches to PL2.

5.1.2 ASAP under Colocation. Figure 8b shows page walk latency
for native execution under colocation. When the memory hierarchy
experiences additional pressure due to the presence of a memory
intensive co-runner, page walk latency increases as compared to
execution in isolation as PT nodes are more likely to be evicted from
the caches. Comparing Figure 9c to Figure 9d, one can see that under
colocation, there are considerably fewer page walk requests served
by the L1-D cache than when running in isolation. As a result, the
average page walk latency on the baseline with colocation ranges
from 74 to 216 cycles, with an average of 131 cycles. This represents
an increase of 2.1-3.2× (average of 2.6×) over execution in isolation.

With prefetching only to PL1, ASAP achieves a page walk latency
reduction of 20%, on average, and 31% in the best case (on redis,
whose average page walk latency drops by 66 cycles). When page
walks frequently contain more than one long-latency request –
such as when requests to PL1 and PL2 are both served by the
main memory, as in Figure 9d – ASAP’s ability to shorten the page
walks latency significantly improves by overlapping the latency of
these requests.

Prefetching PL2, in addition to PL1, is also more beneficial in the
presence of a co-runner. Prefetching both levels reduces the page
walk latency by 25% on average and up to 42% (on memcached with
400GB dataset), over the baseline.

5.2 ASAP under Virtualization
To understand ASAP’s efficacy in a virtualized setting, we study
several ASAP configurations that prefetch from PL1 only or from
both PL1 and PL2 in the guest and/or host. The baseline is a system
without ASAP.

Results for execution in isolation are shown in Figure 10a. Under
virtualization, the baseline page walk latency ranges from 83 to 320

cycles, with an average of 227, a 4.4× increase in comparison to
native execution due to the high cost of 2D walks. We observe that
prefetching from PL1 of only the guest (P1g in the figure) reduces
the average page walk latency by 13% on average. Prefetching from
both PL1 and PL2 (P1g+P2g) in the guest shortens the page walk
latency by another 2%, totaling a 15% average reduction over the
baseline. Such modest results can be explained by the fact that the
nested page walk spends most of its time traversing the host page
table (Section 3.6), which is not accelerated by ASAP that prefetches
from only the guest page table.

WhenASAP prefetches from PL1 of the guest and from PL1 of the
host together (P1g+P1h), walk latency decreases by 35% on average.
Not surprisingly, the highest performance is attained if both PL1
and PL2 are prefetched in both guest and host (P1g+P1h+P2g+P2h).
In that case, page walk latency decreases by 39% on average, and
43% (on pagerank) in the best case. In absolute terms, this configu-
ration reduces page walk cycles by 88 on average and 137 max (on
pagerank).

In a virtualized setting with workload colocation, there exists
a larger opportunity for ASAP to capitalize on. Figure 10b shows
that the baseline page walk latency under colocation increases
considerably (on average, 493 cycles with colocation versus 227
cycles without), which indicates that there are more long memory
accesses which can be overlapped with ASAP. Prefetching from PL1
in both guest and host reduces average page walk latency by 37%
under colocation. Meanwhile, prefetching from PL1 together with
PL2 in both guest and host under workload colocation reduces page
walk latency by an average of 45%. The best-case improvement of
55% is registered on memcachedwith 400GB dataset, whose average
page walk latency drops by 378 cycles.

5.3 Estimation of Performance Improvement
In this section, we estimate performance improvement of ASAP
which prefetches PL1 and PL2 in both guest and host when running
in isolation under virtualization. We (1) quantify the fraction of
cycles spent in page walks on the critical path, and (2) obtain a
conservative estimate of ASAP’s performance improvement by
multiplying this fraction with ASAP’s average reduction in page
walk latency (see Figure 10a).

To quantify the fraction of cycles in page walks on the critical
path, we measure execution time in the absence of TLB misses
(hence, no page walks) and compare that to normal execution with
TLB misses. To eliminate TLB misses, we run the applications using
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Table 6: Conservative projection of ASAP’s performance improvement.

mcf canneal bfs pagerank redis Average
Fraction of cycles spent in page walks on the critical path 31% 24% 68% 50% 18% 34%
ASAP’s reduction in average page walk latency 25% 32% 41% 43% 33% 39%
ASAP’s minimum performance improvement 8% 8% 28% 22% 6% 12%
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Figure 11: Reduction in the number of CPU cycles spent in
page walks for Clustered TLB, ASAP, and the two together.
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Table 7: Reduction in TLB MPKI with clustered TLB. The
data is normalized to native execution in isolation.

mcf canneal bfs pagerank mc80 mc400 redis Average
58% 48% 10% 16% 4% 9% 12% 15%

a small (3GB or smaller) dataset while forcing an application to
use large pages with libhugetlbfs [40]. With such a small dataset
and large pages enabled, the capacity of L2 S-TLB (1536 entries) is
enough to capture the whole page table. As a result, we achieve
a significant (∼100×) reduction in the number of page walks. The
reduction in execution time due to page walks elimination corre-
sponds to page walk cycles on the critical path. Note that using
large pages can significantly reduce the number of page walks
only for datasets smaller than 3GB (reach of the TLB). This and
other limitations of large pages (see Section 2.3) make their use in
a datacenter problematic.

We study all the applications except memcached, which is unaf-
fected by libhugetlbfs. The results of the study are shown in Table 6.
With page walks eliminated, the largest reduction in total execution
time compared to a configuration where page walks are present is
observed on graph workloads – 68% on bfs and 50% on pagerank.
Projecting these results on ASAP, which in isolation under virtu-
alization reduces average page walk latency by 41% on bfs (43%
pagerank), ASAP improves performance by 28% (22% on pagerank).
On average, ASAP is estimated to improve performance by 12%.

5.4 Comparison to Existing Techniques
We compare ASAP with state-of-the-art microarchitectural and
software techniques and demonstrate their synergy with ASAP.

5.4.1 TLB Coalescing. TLB coalescing techniques [4, 5] detect and
exploit available contiguity in virtual-to-physical mappings by coa-
lescing TLB entries for adjacent pages into a single entry. Doing so
increases effective TLB capacity and reduces TLB MPKI.

We evaluate Clustered TLB [5], a state-of-the-art TLB coalescing
technique that coalesces up to 8 PTEs into 1 TLB entry. Table 7
shows the TLB MPKI reduction thanks to Clustered TLB. We find
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Figure 12: Average page walk latency with virtualization
when hypervisor uses 2MB pages (lower is better). Baseline
corresponds to execution in isolation.

that Clustered TLB is highly effective for applications with smaller
datasets, specifically mcf and canneal, reducing TLB MPKI by 58%
and 48%, respectively. However, on the rest of the applications,
which have much larger datasets (see Table 3), Clustered TLB is
less effective, and TLB MPKI reduction varies from just 4% to 16%.

Figure 11 shows the reduction in page walk cycles with Clus-
tered TLB, ASAP, and the two combined. Results are normalized to
a baseline without either Clustered TLB or ASAP. On average, Clus-
tered TLB reduces cycles spent in page walks by 5%, with largest
improvement coming from workloads with small datasets. The re-
duction in the number of page walk cycles is smaller than reduction
in TLB MPKI because the PT nodes accessed by page walks that
are eliminated by Clustered TLB are the ones highly likely to be in
higher-level caches due to spatio-temporal locality. Thus, clustered
TLB eliminates mostly short page walks, leaving uncovered long
page walks that access LLC and memory.

In contrast, ASAP is particularly effective in accelerating long
page walks, particularly when both PL1 and PL2 nodes miss in
higher-level caches. As a result, ASAP and clustered TLB naturally
compliment each other and, when combined, can deliver additive
performance gains. As shown in Figure 11, ASAP alone decreases
the number of cycles spent in page walks by 14%, on average. Com-
bining clustered TLB with ASAP increases TLB reach and reduces
the walk latency, eliminating 22% of page walk cycles, on average,
and 41% in the best case (on canneal).

5.4.2 ASAP with Large Pages. A common optimization employed
by modern hypervisors under low to moderate memory pressure
is allocating guest physical memory in large pages [19]. Doing so
eliminates up to five long-latency accesses to the memory hierarchy
on each walk (i.e., accesses 4, 9, 14, 19, 24 in Figure 7).

We evaluate ASAP with 2MB host pages, with prefetching from
both PL1 and PL2 in the guest and PL2-only in the host. Figure 12
depicts the results for this study. The baseline corresponds to exe-
cution in isolation with host using 2MB pages. ASAP reduces page
walk latency by 25%, on average, over the baseline, and by up to
31% in the best case (on memcached with 400GB dataset).
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Under colocation, the average page walk latency increases by
2.6× as compared to execution in isolation. In this scenario, ASAP
reduces page walk latency by 30%, on average, and by 44% in the
best case on memcached with 400GB dataset, whose average page
walk latency reduces by 171 cycles). Overall, we conclude that even
with shortened page walks enabled by 2MB pages, ASAP delivers a
considerable reduction in page walk latency.

6 RELATEDWORK
Improving TLB reach. Prior art suggests a number of mecha-

nisms to boost TLB’s effective capacity by coalescing adjacent PT
entries [4–6] or by sharing TLB capacity among CPU cores [41, 42]
including the die-stacked L3 TLB design [16]. ASAP’s advantage
over the die-stacked L3 TLB is its microarchitectural simplicity and
ability to work well under colocation. ASAP requires just a set of
registers and simple comparison logic, whereas L3 TLB requires
more than 16MB of die-stacked DRAM. Moreover, by heavily re-
lying on the cache hierarchy, under colocation, L3 TLB is likely
to suffer from thrashing and can experience increased miss rates.
Thus, even L3 TLB would benefit from ASAP. Ultimately, TLB en-
hancements are constrained by a combination of area, power and
latency. Given the continuing growth in dataset sizes, it is impera-
tive to accelerate the latency of TLB misses, which is precisely the
target of ASAP. As shown in Section 5.4.1, ASAP is complementary
to techniques that coalesce adjacent PT entries.

TLB entries prefetching. Prior work explores a number of prefetch
techniques to decrease the number of TLB misses. Kandiraju et al.
study stride and markov TLB prefetchers that rely on available
spatial and temporal locality of consecutive TLB misses [43]. Lustig
et al. exploit inter-core prefetching that is efficient for the workloads
that exhibit sufficient dataset sharing [42]. While these techniques
mitigate the translation overheads for the workloads with regular
memory access patterns, ASAP is oblivious to the TLBmisses origin,
decreasing the penalty of all the TLBmisses including those induced
by the irregular access patterns that are beyond the reach of TLB
prefetchers.

Reducing page table access latency. To reduce PT access latency,
prior work proposes replacing the PT radix tree with lookup-latency
optimized data structures, such as hash tables [18, 44] and hashed
inverted pagetables as in IBM PowerPC [45]. While promising, such
designs are disruptive and may suffer from performance patholo-
gies including long chain traversals due to hash collisions [17, 18].
SPARC architecture handles TLB misses in software while acceler-
ating TLB miss handling by introducing a software-managed direct-
mapped cache of translations, called TSB [46]. However, prior work
shows that larger TSB entries exhibit poorer cache locality making
TSB less efficient than the conventional PT radix tree [17].

Speculative address translation. SpecTLB [47] interpolates on ex-
isting TLB entries to predict translations when a reservation-based
memory manager is used, as in FreeBSD [48, 49]. Thus, SpecTLB
allows speculative execution of memory operations before their
correctness is verified. This approach may pose security threats
inherent to speculative execution of memory operations, as demon-
strated by recent attacks such as Spectre [50], Meltdown [51], and

Foreshadow [52]. In contrast, ASAP never consumes prefetched
entries unless validated by a full page walk.

Translation-triggered prefetch. Bhattacharjee observes that if a
page walker accesses main memory when servicing a TLB miss, the
corresponding data is also likely to be memory-resident [53]. Hence,
the author suggests enabling the memory controller to complete
the translation in-place, so as to immediately prefetch the data for
which the address translation is being carried out. This optimization
can be seamlessly combined with ASAP, whose prefetches would
reduce the latency of both the page walk and the data access.

Virtualization and nested page walks. Nested PTs introduce a
significant performance overhead due to the elevated number of
memory accesses in a page walk. Some researchers seek to limit
the number of accesses by flattening the host PT [54], while the
others use a unified PT structure, called shadow PT, managed by
hypervisor [55]. Finally, Gandhi et al. combines nested and shadow
PTs with a mechanism that dynamically switches between the
two [1]. All of these techniques would benefit from ASAP, which
would further reduce page walk latencies.

7 CONCLUSION
Existing techniques for lowering the latency of address translation
without disrupting the established virtual memory abstraction all
rely on caching – in TLBs, page walk caches and in the processor’s
memory hierarchy. Problematically, the trend toward larger applica-
tion datasets, bigger machine memory capacities and workload con-
solidation means that these caching structures will be increasingly
pressured by the need to keep an ever-larger number of translations.
Thus, high page walk latencies due to frequent memory accesses
are bound to become a “feature” of big-memory workloads.

This work takes a step toward lowering page walk latencies by
prefetching page table entries in advance of demand accesses by
the page walker, effectively uncovering memory level parallelism
within a single page walk. This idea, which we call Address Trans-
lation with Prefetching (ASAP), is powered by an insight that the
inherently serial radix tree traversal performed on a page walk can
be accelerated through direct indexing into a given level of the page
table. Such indexing can be achieved through a simple ordering of
page table entries by the OS without modifications to the under-
lying page table structure. While ASAP does expose the latency
of at least one access to the memory hierarchy, it is nonetheless
highly effective, especially for virtualized and co-located workloads,
reducing page walk latency by up to 55%. A strength of ASAP lies
in the fact that it is a plug-and-play solution that works with the ex-
isting virtual memory abstraction and the full ensemble of today’s
address translation machinery.
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