34 research outputs found

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Full text link
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat

    Assessment of Efficiency of Drying Grain Materials Using Microwave Heating

    Get PDF
    We present results of experimental work on studying the drying of a dense layer of grain using microwave heating. We investigated a series of techniques to supply heat to grain to assess energy efficiency of a microwave field. We studied the following ways of drying: a microwave method, a pulsating microwave method, a microwave-convective cyclic method with blow of a layer with heated air flow and air without preheating, simultaneous microwave-convective drying method.Studying the kinetics of drying in a microwave field showed that we can divide the process into heating periods (zero drying rate), constant (first drying rate) and falling (second drying rate). These periods are characteristic for drying of colloidal capillary-porous bodies at other methods of heat supply. We obtained empirical relationships for the drying rate and the average temperature of grain in the first period based on the generalization of experimental data on the study on drying of grain of buckwheat, barley, oats, and wheat. We presented kinetic dependences in a dimensionless form. They summarize data on the studied grains. The aim of comprehensive studies of various methods of heat supply during drying was determination of the optimal method and rational operational parameters, which ensure high intensity of the process and the required quality of the finished product with minimal energy consumption.All studies took place under identical conditions and for the same grain (oats) to ensure the accuracy of the comparison. We determined that the most preferable method is a simultaneous microwave-convective energy supply without air preheating, which minimizes specific energy consumption. Experimental studies on drying using a microwave field made possible to select the required process parameters: power, heating rate, mass, and form of loading. We plan to develop a technology for drying of grain using microwave energy based on the study dat

    Simulation study of the link between molecular association and reentrant miscibility for a mixture of molecules with directional interactions

    Get PDF
    The reentrant liquid-liquid miscibility of a symmetrical mixture with highly directional bonding interactions is studied by Gibbs ensemble Monte Carlo simulation. The resulting closed loop of immiscibility and the corresponding lower critical solution temperature are shown to be a direct consequence of the dramatic increase in association between unlike components as the temperature is lowered. Our exact calculations for an off-lattice system with a well-defined anisotropic potential confirm the findings of previous theoretical studies.Dirección General de Investigación Científica y Técnica PB94-144

    Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    Get PDF
    Background: Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results: The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions: (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect
    corecore