425 research outputs found

    Visiting Judges

    Get PDF

    Traveling Judges

    Get PDF
    Around the world, domestic courts focused on commercial disputes hire foreign judges. The practice seems to resemble arbitration, but is also rooted in colonialism. These traveling judges are predominantly retired English judges hired by small, market-dominant jurisdictions, like Hong Kong or Dubai. The judges’ identities reveal efforts to harness business preferences for English common law into domestic court systems. While judges aspire to spread the rule of law, local politics may dictate these courts’ futures. This Article maps the practice of traveling judges and explores its implications

    Numerical characterization of cohesive and non-cohesive 'sediments' under different consolidation states using 3D DEM triaxial experiments

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elyashiv, H., Bookman, R., Siemann, L., ten Brink, U., & Huhn, K. Numerical characterization of cohesive and non-cohesive 'sediments' under different consolidation states using 3D DEM triaxial experiments. Processes, 8(10), (2020): 1252, doi:10.3390/pr8101252.The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.This research received no external funding

    Impact of earthquakes on agriculture during the Roman–Byzantine period from pollen records of the Dead Sea laminated sediment

    Get PDF
    The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman–Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze’elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse

    Risk Factors for GI Adverse Events in a Phase III Randomized Trial of Bevacizumab in First-Line Therapy of Advanced Ovarian Cancer: A Gynecologic Oncology Group Study

    Get PDF
    Purpose To evaluate risk factors for GI adverse events (AEs) within a phase III trial of bevacizumab in first-line ovarian cancer therapy. Patients and Methods Women with previously untreated advanced disease after surgery were randomly allocated to six cycles of platinum-taxane chemotherapy plus placebo cycles (C)2 to C22 (R1); chemotherapy plus bevacizumab C2 to C6 plus placebo C7 to C22 (R2); or chemotherapy plus bevacizumab C2 to C22 (R3). Patients were evaluated for history or on-study development of potential risk factors for GI AEs defined as grade 2 perforation, fistula, necrosis, or hemorrhage. Results Of 1,873 patients enrolled, 1,759 (94%) were evaluable, and 2.8% (50 of 1,759) experienced a GI AE: 10 of 587 (1.7%, R1), 20 of 587 (3.4%, R2), and 20 of 585 (3.4%, R3). Univariable analyses indicated that previous treatment of inflammatory bowel disease (IBD; P = .005) and small bowel resection (SBR; P = .032) or large bowel resection (LBR; P = .012) at primary surgery were significantly associated with a GI AE. The multivariable estimated relative odds of a GI AE were 13.4 (95% CI, 3.44 to 52.3; P \u3c .001) for IBD; 2.05 (95% CI, 1.09 to 3.88; P = .026) for LBR; 1.95 (95% CI, 0.894 to 4.25; P = .093) for SBR; and 2.15 for bevacizumab exposure (aggregated 95% CI, 1.05 to 4.40; P = .036). Conclusion History of treatment for IBD, and bowel resection at primary surgery, increase the odds of GI AEs in patients receiving first-line platinum-taxane chemotherapy for advanced ovarian cancer. After accounting for these risk factors, concurrent bevacizumab doubles the odds of a GI AE, but is not appreciably increased by continuation beyond chemotherapy

    Predictive modeling for determination of microscopic residual disease at primary cytoreduction: An NRG Oncology/Gynecologic Oncology Group 182 Study

    Get PDF
    Microscopic residual disease following complete cytoreduction (R0) is associated with a significant survival benefit for patients with advanced epithelial ovarian cancer (EOC). Our objective was to develop a prediction model for R0 to support surgeons in their clinical care decisions.Demographic, pathologic, surgical, and CA125 data were collected from GOG 182 records. Patients enrolled prior to September 1, 2003 were used for the training model while those enrolled after constituted the validation data set. Univariate analysis was performed to identify significant predictors of R0 and these variables were subsequently analyzed using multivariable regression. The regression model was reduced using backward selection and predictive accuracy was quantified using area under the receiver operating characteristic area under the curve (AUC) in both the training and the validation data sets.Of the 3882 patients enrolled in GOG 182, 1480 had complete clinical data available for the analysis. The training data set consisted of 1007 patients (234 with R0) while the validation set was comprised of 473 patients (122 with R0). The reduced multivariable regression model demonstrated several variables predictive of R0 at cytoreduction: Disease Score (DS) ( < 0.001), stage ( = 0.009), CA125 ( < 0.001), ascites ( < 0.001), and stage-age interaction ( = 0.01). Applying the prediction model to the validation data resulted in an AUC of 0.73 (0.67 to 0.78, 95% CI). Inclusion of DS enhanced the model performance to an AUC of 0.83 (0.79 to 0.88, 95% CI).We developed and validated a prediction model for R0 that offers improved performance over previously reported models for prediction of residual disease. The performance of the prediction model suggests additional factors (i.e. imaging, molecular profiling, etc.) should be explored in the future for a more clinically actionable tool

    Designs for clinical trials with time-to-event outcomes based on stopping guidelines for lack of benefit

    Get PDF
    <p>Abstract</p> <p>background</p> <p>The pace of novel medical treatments and approaches to therapy has accelerated in recent years. Unfortunately, many potential therapeutic advances do not fulfil their promise when subjected to randomized controlled trials. It is therefore highly desirable to speed up the process of evaluating new treatment options, particularly in phase II and phase III trials. To help realize such an aim, in 2003, Royston and colleagues proposed a class of multi-arm, two-stage trial designs intended to eliminate poorly performing contenders at a first stage (point in time). Only treatments showing a predefined degree of advantage against a control treatment were allowed through to a second stage. Arms that survived the first-stage comparison on an intermediate outcome measure entered a second stage of patient accrual, culminating in comparisons against control on the definitive outcome measure. The intermediate outcome is typically on the causal pathway to the definitive outcome (i.e. the features that cause an intermediate event also tend to cause a definitive event), an example in cancer being progression-free and overall survival. Although the 2003 paper alluded to multi-arm trials, most of the essential design features concerned only two-arm trials. Here, we extend the two-arm designs to allow an arbitrary number of stages, thereby increasing flexibility by building in several 'looks' at the accumulating data. Such trials can terminate at any of the intermediate stages or the final stage.</p> <p>Methods</p> <p>We describe the trial design and the mathematics required to obtain the timing of the 'looks' and the overall significance level and power of the design. We support our results by extensive simulation studies. As an example, we discuss the design of the STAMPEDE trial in prostate cancer.</p> <p>Results</p> <p>The mathematical results on significance level and power are confirmed by the computer simulations. Our approach compares favourably with methodology based on beta spending functions and on monitoring only a primary outcome measure for lack of benefit of the new treatment.</p> <p>Conclusions</p> <p>The new designs are practical and are supported by theory. They hold considerable promise for speeding up the evaluation of new treatments in phase II and III trials.</p

    Using Site Visits to Strengthen Collaboration

    Get PDF
    The SUMMIT-P project is a multi-institutional endeavor to leverage interdisciplinary collaboration in order to improve the teaching of undergraduate mathematics courses in the first two years of college. One goal of this work is to establish collaborative communities among the institutions involved. As part of the project, institutions visit one another on site visits that are structured according to a common protocol. The site visits have been valuable to the project. Participating institutions report the exchange of actionable ideas and feedback; members of the grant leadership team have used the site visits to direct the overall project, and evaluators have refined questions and identified trends that will help their assessment of the project. At a deeper level, the site visits have created a strong sense of community among those involved in every aspect of the SUMMIT-P project
    corecore