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Abstract 11 

Studies of recent environmental perturbations often rely on data derived from marine 12 

sedimentary records. These records are known to imperfectly inscribe the true sequence of 13 

events, yet there is large uncertainty regarding the corrections that should be employed to 14 

accurately describe the sedimentary history. Here we show in recent records from the Gulf of 15 

Aqaba, Red Sea, how events of the abrupt disappearance of the planktonic foraminifer 16 

Globigerinoides sacculifer, and episodic deposition of the artificial radionuclide 137Cs, are 17 

significantly altered in the sedimentary record compared to their known past timing. Instead of 18 

the abrupt disappearance of the foraminifera, we observe a prolonged decline beginning at core 19 

depth equivalent to ~30 y prior to its actual disappearance and continuing for decades past the 20 

event. We further observe asymmetric smoothing of the radionuclide peak. Utilization of 21 

advection-diffusion-reaction models to reconstruct the original fluxes based on the known 22 

absolute timing of the events reveal that it is imperative to use a continuous function to describe 23 

bioturbation. Discretization of bioturbation into mixed and unmixed layers significantly shifts 24 

the location of the modeled event. When bioturbation is described as a continuously decreasing 25 

function of depth, the peak of a very short term event smears asymmetrically but remains in 26 

the right depth. When sudden events repeat while the first spike is still mixed with the upper 27 

sediment layer, bioturbation unifies adjacent peaks. The united peak appears at an intermediate 28 

depth that does not necessarily correlate with the timing of the individual events. In a third 29 

case, a long lasting sedimentary event affected by bioturbation, the resulting peak is rather 30 

weak compared to the actual event and appears deeper in the sediment column than expected 31 

based on the termination of the event. The model clearly shows that abrupt changes can only 32 

endure in the record if a thick sediment layer settled on the sediment-water interface at once or 33 

if bioturbation rates decreased to very low values for a prolonged period of time. In any other 34 

case smearing by bioturbation makes an abrupt event appear to have started shortly before the 35 

real timing and end long after its true termination. 36 
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1. Introduction 40 

 The sedimentary record is an imperfect archive of the past and is known to be strongly 41 

influenced by numerous processes such as: organic matter remineralization, sediment mixing 42 

by burrowing organisms, physical sediment transport processes and variations in sediment 43 

accumulation rates (Aller, 2014; Berner, 1980). Among these processes, mixing of marine 44 

sediments by burrowing benthic organisms (bioturbation) is often the most deceiving process 45 

for environmental change reconstructions since it smoothes and displaces events in the 46 

sedimentary record in ways that are not always intuitive. For example, in the practical 47 

application of pollution spikes for dating and stratigraphic correlation purposes, it is often 48 

considered that diffusion and bioturbation had smeared the sedimentary peaks but assumed that 49 

it did not shift peak locations. This assumption was challenged in several studies that compared 50 

sedimentary records with documented fluxes (Klaminder et al., 2012; Kramer et al., 1991) or 51 

stable isotope composition of contemporaneous organisms (Bard et al., 1987; Löwemark et al., 52 

2008). It is thus clear that unwrapping the distorting effect bioturbation has on sedimentary 53 

records is key to obtaining accurate age determinations. Yet, despite the obvious importance 54 

of this practice and the availability of numerical procedures for its solution, its implementation 55 

in paleoceanographic studies remains rather sparse due to difficulties in producing reliable 56 

reconstructions (Bard et al., 1987; Berger et al., 1977; Schiffelbein, 1985; Trauth, 2013).  57 

 Bioturbation is a nearly ubiquitous phenomenon in marine sediments underlying 58 

oxygenated bottom waters but its intensity can vary over several orders of magnitude 59 

(Boudreau, 1994; Tromp et al., 1995). The immediate effect of bioturbation is that it tends to 60 

erase short term events from the sedimentary record under a continuous sedimentation regime 61 

hence limiting the possibility to extract high resolution data from the sedimentary record 62 

(Bentley et al., 2006; Wheatcroft and Drake, 2003). On a first glance the effect of bioturbation 63 

may seem somewhat arbitrary yet faunal mixing rates seem to be correlated with the organic 64 

carbon flux and sediment accumulation rates and have fairly constant depth dependence 65 

(Boudreau, 1994; Middelburg et al., 1997; Müller and Suess, 1979; Suess, 1980; Trauth et al., 66 

1997; Tromp et al., 1995); this means that in most cases its effect should be predictable to a 67 

certain degree. Early attempts to quantitatively assess the effect of bioturbation on pelagic 68 

sediments assumed that the upper sediment layer is homogenously mixed at an infinite rate 69 

(Berger and Heath, 1968). Later versions of this model introduced a biodiffusion coefficient 70 

which was assumed to mix the sediments of the upper layer at a constant rate (Guinasso and 71 

Schink, 1975; Peng et al., 1979). This model is still widely used and seems to fit radioisotope 72 



data very well in many cases (Boer et al., 2006; Maire et al., 2008). The use of a diffusion 73 

coefficient to describe such complex processes is conceptually problematic but appears to be 74 

valid as long as the mixing process is random and faunal activity is fast compared to the studied 75 

timescale (Meysman et al., 2010).  A bigger problem with the two layer model is the 76 

discontinuous description of bioturbation which is not supported by the observation that the 77 

decrease in sediment macrofauna abundance with depth is normally gradual (Flach and Heip, 78 

1996; Hines and Comtois, 1985). Because of the problem of discontinuity, diagenetic models 79 

that try to explain several parameters with a single code generally shifted to describe 80 

bioturbation as a decreasing function with depth (Cai et al., 2010; Krumins et al., 2013). 81 

 In the present contribution we calculate the sedimentation rates in the Gulf of Aqaba, 82 

Red Sea, and analyze the application of mathematical modeling for high resolution 83 

environmental change studies from sedimentary records. This was done by reconstructing the 84 

sedimentary record development over time for the artificial radioisotope 137Cs and the 85 

disappearance of a common planktonic foraminifera species based on their known water 86 

column fluxes using advection-diffusion-reaction models. These reconstructions were 87 

compared with the actual sedimentary records to lend insight into the way punctuated events 88 

are recorded in marine sediments and illustrate the effect of the mathematical model and flux 89 

variations on the resulting sedimentary records and particularly on the location and shape of 90 

the recorded peaks. 91 

2. Study site 92 

 The Gulf of Aqaba (GOA) is a long (~180 km), narrow (15-25 km) and deep (1830 m 93 

maximal depth) northward extension of the Red Sea (Ben Avraham et al., 1979). The regional 94 

climate is hyper arid with scarce fresh water sources. The main sediment source to GOA comes 95 

from infrequent flash floods that deliver high sediment loads with very little water (Katz et al., 96 

2015). Additional sediment sources are precipitation of the shells of marine organisms (Reiss 97 

and Hottinger, 1984; Steiner et al., 2014) and dust (Chen et al., 2007). The only significant 98 

water source to GOA is Red Sea surface waters entering through the Straits of Tiran. Driven 99 

by a density gradient, this water flows northward mainly during April-September. In the 100 

process, Red Sea surface water subducts the GOA intermediate water as its density increases 101 

due to evaporation (Biton and Gildor, 2011). Deepwater forms within GOA mostly during 102 

December-March and generally flow southward toward the strait and into the depth of the Red 103 

Sea. 104 



GOA’s region was very scarcely populated until the middle of the 20th century. The 105 

independence of Jordan and Israel at 1946 and 1948, respectively, turned it to a major 106 

commercial and oil port of these countries and initiated the rapid development of the cities Eilat 107 

and Aqaba on the northern coast. This development increased the nutrient input to the highly 108 

oligotrophic water from the phosphate docks and raw sewage spillage. Untreated sewage from 109 

Aqaba and Eilat was directly released to sea until 1985 and 1995, respectively. An even larger 110 

source of nutrients was commercial fish cages that operated in northern GOA between 1989-111 

2008 (Black et al., 2012; Lazar et al., 2008; Oron et al., 2014).  112 

3. Materials and Methods 113 

3.1 Sampling 114 

 Short sediment cores were retrieved at various locations in northern GOA at a water 115 

depth range of 400-720 m (Fig. 1) using a four barrel MC-400 multicorer (Ocean Instruments, 116 

San Diego) with sample tube length of 60 cm and inner diameter of 9.5 cm. The cores were 117 

sectioned at a vertical resolution of 0.5-2 cm. An aliquot of 10 gr of each sample was wet sieved 118 

through a 250 μm mesh for foraminifera picking. The remaining sample was weighed, dried at 119 

60˚C for one week, weighed again for porosity determination (see supplementary material) and 120 

crushed to powder. 1 gr of the powdered sample was processed for 210Pb determination by 121 

alpha spectroscopy; the activity of 137Cs as well as 40K, 238U and 232Th was measured in the 122 

remaining sample by gamma spectroscopy.   123 

3.2 Alpha spectroscopy  124 

 210Pb activity (half life=22.2 y;  Basunia, 2014) was measured indirectly by measuring 125 

the activity of its decay product 210Po using an Octete Plus alpha spectrometer (ORTEC, Oak 126 

Ridge) equipped with 450 mm2 silicon dioxide-passivated, ion-implanted detectors. Each 127 

sample was counted for 74-90 hours. Samples were prepared for 210Po counting 12-24 months 128 

after retrieval of the cores to ensure secular equilibrium with 210Pb (210Po half life=138 d;  129 

Basunia, 2014). Excess 210Pb (210Pbex) in the cores was calculated by subtracting the steady 130 

state activity measured at the bottom of the core from all samples and correcting for 131 

disintegrations during the time elapsed since sampling.  132 

 Sample preparation for alpha counting was as follows: 450-500 mg of dry crushed 133 

sediments were weighed in a polypropylene centrifuge tube, wetted with 1 ml double distilled 134 

water and acidified with 5 ml concentrated HCl (37%). The samples were vortexed, and then 135 



heated to 85˚C for 6.5 hours while shaking at 50 rpm. The acid was separated from the solids 136 

by centrifugation and decanted to a flat bottom polyethylene bottle. 40 ml double distilled water 137 

was then added to the sediment tube, centrifuged and decanted to the acid containing bottle 138 

with additional 4 ml of 40 gr/L ascorbic acid. After 30 min, a thin silver disc covered on the 139 

bottom side with an electrical tape (and washed with ethanol and water) was added to the flat 140 

bottom bottle. 210Po spontaneously adsorbed onto the silver disc during 17 hours of heating to 141 

60˚C (Flynn, 1968). All samples from each core were prepared simultaneously with a sediment 142 

sample that served as a repeating internal standard. The measured difference in activity 143 

between duplicates and the internal standard was always lower than 10%. This assured that 144 

measured 210Pb profiles are consistent and well calibrated against each other. Absolute activity 145 

calibrations were done by adding a spike of 209Po with known activity into selected samples 146 

from each core at the beginning of the acid leaching.  147 

3.3 Gamma spectroscopy 148 

 Gamma ray emission by 137Cs (half life=30.1 y; Browne and Tuli, 2007), 40K, 238U and 149 

232Th in the sediment samples was measured using a coaxial high purity germanium detector 150 

based gamma-ray spectrometer (Eurisys-Mesures, France). The detector was coupled with a 151 

4096 channels computer-based multi channel analyzer acquisition board (Gammafast) and 152 

calibrated with standard reference materials P37553 and M30593 (Amersham Int.). Spectrum 153 

acquisition, peak search and energy calibration were carried out using interwinner 4.0 software 154 

(Eurisys-Mesures, France). The background and sample activities of 16-52 gr dry weight 155 

samples were counted for 50,000 s in a Petri dish, using planar geometry, to minimize self-156 

absorption and achieve higher detection efficiency. The efficiency and resolution of the system 157 

for 137Cs (peak 661.6 keV) were 2.5% and 1.2keV respectively.137Cs activity was calculated 158 

with the equation:                 159 

C =
𝐶𝑡−𝐶𝐵

𝑚∙𝐸𝛾∙𝑃𝛾
                             (1) 160 

where m is the sample mass in kg, Ct is the total counting rate (cps) of the 661 keV peak, CB is 161 

the counting rate (cps) of the background, Eγ and Pγ are the detection efficiencies and emission 162 

probability, respectively. 163 

 The gamma detector suffered significant instability during the analyses of core 164 

707Aug11. To correct this artifact, measured 137Cs activities from core 707Aug11 were divided 165 

by measured 40K activities. Validity of this correction was verified by the constant 40K activities 166 



with depth measured in core 400Aug11 and in six previously analyzed cores from the same 167 

region (Pittauerová et al., 2014). 168 

3.4 Foraminifera picking 169 

 10 gr bulk sediment samples were wet sieved through a 250 μm mesh. The >250μm 170 

fraction was collected, dried at 50˚C and used for picking and counting of planktonic 171 

foraminifera shells of the species: Globigerinoides sacculifer, Globigerinoides ruber, 172 

Globigerinella siphonifera and Orbulina universa. Species identification was done according 173 

to the handbook of Hottinger et al. (1993).  174 

4. A mass conservation model for a sedimentary profile  175 

 The concentration of any component entrained in the sediment changes with time as a 176 

function of sedimentation rate, mixing by faunal activity (bioturbation), compaction, and by its 177 

generation/consumption rates. Mathematically, the burial of sediments can be described as 178 

advective transport, coupled to mixing processes that are often approximated as diffusive 179 

transport (Berner, 1980; Boudreau, 1997; Burdige, 2006; Meysman et al., 2010).   180 

 Below we provide a mass conservation equation describing the vertical distribution of 181 

the foraminifer G. sacculifer, which disappeared from GOA in 1990 (see section 4.1), in order 182 

to evaluate the effect of bioturbation on its sedimentary record. The variable chosen to describe 183 

the distribution of G. sacculifer at any depth interval within the sediment was its relative 184 

abundance (the number of G. sacculifer individuals out of the total number of planktonic 185 

foraminifera). The relative abundance was used here for the following reasons: 1. It yielded a 186 

smooth vertical distribution as a result of filtering out abrupt variations in the absolute 187 

concentration of foraminifers; 2. The long-term ratio between the other main foraminifera 188 

species (G. ruber and G. siphonifera), show no change; and 3. The planktonic foraminifera 189 

counted in this study were all in a similar size range and had a pseudo-spherical structure, 190 

suggesting that the bioturbation coefficient is probably identical for all three species. Another 191 

simplification to Eq. 2 is exclusion of the reaction term. This was done since bottom water in 192 

the study area is highly supersaturated with respect to calcite and aragonite. Therefore, 193 

foraminiferal shells in the upper sediments of northern GOA are well-preserved, showing just 194 

mild dissolution patterns (Sultan, 2014). Accordingly, the 1-D mass conservation equation for 195 

vertical distribution of G. sacculifer in the upper sedimentary column only includes transport 196 

terms (sedimentation and bioturbation) (Berner, 1980) : 197 



∂A

∂t
φs =

∂

∂x
[φsDB

∂A

∂x
] −

ω

ρs
∂A

∂x
            (2) 198 

where A is the relative abundance of G. sacculifer (100∙G. sacculifer shells/ total planktonic 199 

foraminifera), t is time (years), x depth in the sediment (cm), φs the solid volume (φs 200 

=1-porosity) assuming steady state porosity (porosity changes only due to compaction), DB is 201 

a mixing coefficient which includes mixing by biological activity and physical processes 202 

(cm2∙y−1), ω rate of sediment accumulation (gr∙cm−2∙y−1) and ρs is the solid density (=2.70±0.03 203 

gr∙cm−3, see supporting information for its calculation). The first term on the right hand side of 204 

Eq. 2 describes the effect of biological and physical mixing as a diffusive process; the second 205 

term describes the accumulation of new sediment on top of the old sediment surface and the 206 

following downward compaction of the sediment. Upper boundary condition for the solution 207 

is a constant flux (J) across the sediment-water interface (J0=-φs∙D0∙(∂A/∂x)+φs∙ω∙A0, 208 

subscript 0 marks the value at the sediment-water interface), lower boundary condition is 209 

∂A/∂x=0.  210 

 The equation that describes 210Pbex and 137Cs activity in the sediment is similar to Eq. 2 211 

with the addition of an expression which describes their radioactive decay (Meysman et al., 212 

2005): 213 

∂C

∂t
φs =

∂

∂x
[φsDB

∂C

∂x
] −

ω

ρs
∂C

∂x
−φsλC                  (3) 214 

here C is activity and λ the radioactive decay constant (y−1). The upper boundary condition is 215 

a constant flux in the 210Pbex model and a variable input flux in the 137Cs model, the lower 216 

boundary conditions for both radioisotopes are C=0 and ∂C/∂x=0. 210Pbex flux to the sediment 217 

surface was calculated from its inventory in the sediment by: 218 

J = λ ∙ ∑(Cφsρsdx)                                         (4) 219 

where dx is the thickness of the sediment layer. 220 

 Porosity used for the calculation according to Eqns. 2-4 was fit to the measured porosity 221 

profiles using the equation: 222 

φ = −a ∙ ln(x) + b                                          (5) 223 



where x is depth below the sediment-water interface, a and b are empirical parameters. The 224 

porosity profiles themselves along with the empirical fits are presented in the online supporting 225 

information. Mixing rates were assumed to decrease exponentially with depth (Cai et al., 2010): 226 

DB(x) = D0 ∙ e
−x Dx⁄                                           (6) 227 

where D0 is the mixing coefficient at the sediment-water interface (x=0), and Dx an attenuation 228 

coefficient of the mixing intensity with depth.  229 

4.1 Numerical solution 230 

 Eqns. 2 and 3 were solved numerically with MATLAB in their differential form with a 231 

final difference scheme. For the solution the vertical axis was segmented into cells of variable 232 

size, each represents a layer that accumulated during 0.1 y. At each time step all cells shift one 233 

cell downward and a new sediment layer enters the top cell. The bottom cell leaves the solution 234 

scheme. All cells are then mixed with their neighbors. Since the model considers a decrease in 235 

porosity with depth due to compaction, the vertical scale of each cell decreases with depth.  236 

 The equations are solved iteratively at each time step using Gaussian elimination. The 237 

time derivative was approximated with a backward difference approximation (Hornberger and 238 

Wiberg, 2005). The second derivative in space was approximated by a central difference 239 

approximation and the first derivative in space by a backward difference approximation to 240 

avoid numerical instability as bioturbation approaches zero (Boudreau, 1996).  241 

4.2 Profile formation following the arrival of a pollution spike 242 

 As a preliminary assessment of the model predicting exponential decrease in 243 

bioturbation we calculated the process of profile formation following the arrival of a short term 244 

spike. This case examines a base assumption of dating utilizing iridium and cesium which is 245 

the claim that even if diffusion and bioturbation smeared the sedimentary peak, their location 246 

does not shift. This assumption can be analyzed using the mathematical description of diffusion 247 

by Fick’s first law (Berner, 1980): 248 

F = −𝐷
∂C

∂X
                                        (7) 249 

Eq. 7 states that maximum net transfer of mass due to multiple random small movements 250 

(diffusion) will occur at the location of the maximum gradient in concentration as long as the 251 

diffusion coefficient is constant. In the specific case of bioturbation, the diffusion coefficient 252 



is also varying with depth - it is normally high near the surface and declines with depth. The 253 

rapid decline of the bioturbation diffusion coefficient means that in addition to gradients in 254 

concentration, mixing rates will also be controlled by depth in the sediment as the concentration 255 

peak is advected downwards, and mass transfer due to bioturbation will be asymmetric (Fig. 256 

2). 257 

 A general case for 137Cs/ iridium deposition in sediments may be described as a spike 258 

with very high activity that settles on the sediment-water interface. This spike is initially mixed 259 

downward by burrowing organisms; as more sediment settles on top the bioturbation process 260 

is shifted upward. As a result, the spike is mixed upward for a much longer period of time and 261 

upward mixing of mass is more important than downward mixing. Fig. 3 illustrates the profile 262 

formed should this process mix an inert tracer and the asymmetric nature of its final 263 

distribution. This process was previously shown to explain the shape of iridium anomalies (see 264 

Hull et al., 2011, for a detailed description of the effect varying sedimentation and mixing rates 265 

have on the final shape of the peak) and predict profile formation following pollution events 266 

(Fuller et al., 1999). An important outcome of this simulation is that in this case the peak 267 

position does not move and can be regarded as a reliable indicator of time.  268 

4.3 Bioturbation in a two-layer model 269 

 An alternative representation of the above case is assuming that within an upper 270 

“mixed” layer, bioturbation operates much faster than sedimentation. This condition holds if 271 

√DB ∙ ∆t ≫ ω ∙ ∆t  for a given time interval, t. In this case the sediments within the upper 272 

mixed layer are homogenous; hence, the concentration of any inert solid variable in this layer 273 

is constant. This simple scenario can be expressed numerically to plot the present day 274 

sedimentary profile of any inert variable (that is supplied with the sediments settling on the sea 275 

floor) that underwent a square wave event, e.g., abrupt disappearance of a species from the 276 

water column and its recovery after a period. In this case the change in concentrations with 277 

time within the surface mixed layer is calculated using the following equation: 278 

𝐶𝑀𝐿,𝑖 = 𝐶𝑀𝐿,𝑖−1 −
𝐶𝑀𝐿,𝑖−1−𝐶𝑆,𝑖

𝑛𝑀𝐿
                           (8) 279 

CML is the mixed layer concentration of the tracer, CS is the concentration in the settling layer, 280 

nML is the number of cells in the mixed layer, i stands for the current time step and i-1 for the 281 

previous time step.   282 



 The two layer model produces large anomalies in the location of the peak (Fig. 4). In 283 

this case, every new sediment layer instantaneously mixes with the layers below it to form a 284 

uniform mixed layer profile. If an event is short termed (lasts only 1 dt) the next layer after the 285 

spike will again contain background concentrations. The bottom part of the former mixed layer 286 

will now stay below the mixed layer and preserve the mixed spike signal while the new 287 

sediment layer mixes with the entire mixed layer and brings its concentration closer to the 288 

background values (Fig. 4a). This means that the spike will appear a few cm too deep (the shift 289 

will equal the depth of the mixed layer - Trauth, 2013). If an event lasts for a longer period of 290 

time, the concentration in the mixed layer gradually approaches the flux to the sediment 291 

surface. As a result, at each time step, the concentration in the last layer that left the mixing 292 

zone will be closer to the event signal than the concentration in the layers below it. At the time 293 

of recovery the peak will therefore always be found in the same depth relative to the surface 294 

(just below the bottom of the mixed layer) and will gradually shift upward relative to the layer 295 

that represents the beginning of the event. The outcome of this calculation is that in the two 296 

layer model the peak location marks the base of the mixed layer at the time of recovery. 297 

 Guinasso and Schink (1975) modeled the effect of varying mixing to sedimentation 298 

ratios in a two layer model and showed that the degree of peak shifting decreases as DB/ω 299 

decreases. As long as there is bioturbation, the two-layer model will always predict that the 300 

peak of a spike will be shifted downward. These anomalies as well as concentration flattening 301 

in the mixed layer do not appear in our data. Therefore, in this manuscript we consider only 302 

the model predicting exponential decrease in bioturbation and do not fit our data using the two-303 

layer model.  304 

5. Results 305 

5.1 Globigerinoides sacculifer abundance 306 

 G. sacculifer comprised over 50% of the planktonic foraminifera in GOA during the 307 

majority of the Holocene and until the mid 1980’s based on sediment cores (Reiss et al., 1980), 308 

sediment core tops (Reiss et al., 1974; Siccha et al., 2009), and plankton net tows (Almogi-309 

Labin, 1984; Bijma et al., 1990; Erez et al., 1991). The last published observation of G. 310 

sacculifer in GOA by Russell et al. (1994) stated that its proportion from total planktonic 311 

foraminifera was ~5% in 1990. G. sacculifer was not found in plankton net tows during a 1992 312 

sampling campaign (Hastings et al., 1996) and was not observed since in the water column 313 

(numerous observation by J. Erez). Its shells are still abundant in sediment core tops. It was 314 



assumed for the calculation that G. sacculifer distribution with depth in the sediment was 315 

constant until 1990 when it abruptly disappeared from the water column. The field data 316 

constrained this event to 1986-1992 and suggested that it may have been gradual; hence there 317 

is a ~10% uncertainty in calculated sedimentation rates based on this assumption.  318 

 The recorded disappearance of G. sacculifer from GOA’s water column provides a well 319 

constrained anchor for sedimentation rate calculations. The sedimentary profile (Fig. 5) 320 

confirms that prior to its disappearance the abundance of G. sacculifer compared to the other 321 

large planktonic foraminifera was stable for a long period. It is also clear from this record just 322 

how different the actual event was from the observed sedimentary profile: In contrast to the 323 

rather abrupt disappearance from the water column, the sedimentary record shows a very 324 

gradual decline that started prior to the disappearance of the organism from the water column. 325 

At present G. sacculifer shells are still found in the top cores but their abundance declined to 326 

10-50% of its previous steady state abundance (Fig 5). 327 

5.2 137Cs activity 328 

 The artificial radionuclide 137Cs started to accumulate in the atmosphere in 1952 as a 329 

result of nuclear weapon tests. The atmospheric concentrations of 137Cs peaked around 1963 330 

and started to decline afterwards (Pennington et al., 1973).  Additional spikes of 137Cs were 331 

released to the atmosphere as a result of the nuclear disasters in Chernobyl, 1986 (Petrinec et 332 

al., 2012) and Fukushima-Daiichi, 2011 (Kawamura et al., 2014). In the sediments, cesium 333 

binds very strongly to micaceous minerals but can exhibit some mobility when bound to other 334 

phases (Hamilton-Taylor and Davison, 1995).  335 

 In the cores collected on August 2011 (Fig. 6) 137Cs activity peaked at 5-6 cm depth 336 

and peaked again near the surface. This surface peak was not observed in the cores Pittauerová 337 

et al. (2014) collected during 2007-8 indicating that its source was possibly the fallout from the 338 

March 2011 Fukushima-Daiichi nuclear accident which probably had reached the Red Sea by 339 

eolian deposition. A reconstruction of 137Cs deposition rates over northern GOA based on the 340 

sedimentary profiles and published data regarding its global dispersion (Clark and Smith, 1988; 341 

Evangeliou et al., 2013; Papastefanou et al., 1995; UNSCEAR, 2000) is plotted in Fig. 7. 342 

Calculated deposition rates were lower than the northern hemisphere mean, probably as a result 343 

of latitudinal variability within the northern hemisphere (UNSCEAR, 2000) and scarcity of wet 344 

precipitation in the region (Clark and Smith, 1988; Pittauerová et al., 2014).  345 



5.3 210Pb activity 346 

 Dating with 210Pb takes advantage of variations in the physical properties of different 347 

elements from the 238U decay series: following the decay of 226Ra to the noble gas radon (222Rn, 348 

half life=3.8 d; Singh et al., 2011) ,  a significant portion of the radon diffuses upward from 349 

water and soil to the atmosphere (Church and Sarin, 2008). Within three weeks all 222Rn decays 350 

and turns into 210Pb via several short lived intermediates. In contrast to radon, lead has very 351 

strong affinity to solids (Yang et al., 2013) and rapidly adsorbs to air borne particles and organic 352 

molecules. It then settles with these particles and accumulates on the sediment surface in excess 353 

of the 210Pb that form in the sediments from insitu disintegrations of 222Rn (Church and Sarin, 354 

2008). The fraction of 210Pb that forms in the sediments from 222Rn disintegrations (supported 355 

210Pb) is assumed to be represented by the constant 210Pb activity attained below a certain depth 356 

in the sediment. This supported 210Pb is reduced from measured 210Pb activities to obtain the 357 

activities of 210Pb precipitated with settling particles (termed excess lead 210 or 210Pbex). 358 

 Model fits to 210Pbex activity measurements suggest higher sedimentation rates and 359 

lower surface bioturbation rates than the fits to G. sacculifer abundance and 137Cs activity. The 360 

lower 210Pbex surface mixing coefficient is accompanied by slower attenuation of this 361 

coefficient with depth (Fig. 8 and Table 1). This is probably a result of differences in the 362 

sediment fraction represented by the different materials. Pure minerals and large particles seem 363 

to be rapidly mixed near the sediment-water interface by large organisms while organo-clay 364 

assemblages, to which 210Pb is adsorbed, may be taken preferentially into the burrows of 365 

benthic organisms. Calculated 210Pbex fluxes from this study are on average 265±25 Bq∙m−2∙y−1. 366 

These values are within the range of average latitudinal continental flux densities for 20-30˚N 367 

of 195±110 Bq∙m−2∙y−1 (Baskaran, 2011). Yet they are significantly higher than the 140±50 368 

Bq∙m−2∙y−1 Pittauerová et al. (2014) calculated for the same region. Supported 210Pb activities 369 

we calculated based on the deep core steady state 210Po activities are comparable to 226Ra 370 

activity measurements Pittauerová et al. (2014) used in their 210Pbex calculations. 371 

5.4 Northern Gulf of Aqaba accumulation and mixing rates 372 

Modeled sedimentation and mixing rates calculated in the present study are summarized 373 

in Table 1 and plotted as a time-depth diagram in Fig. 9. In a previous study, sediment 374 

accumulation rates of 40-70 cm∙ka−1 were calculated for northern GOA cores using radiocarbon 375 

dating (Al-Rousan et al., 2004; Arz et al., 2003; Lamy et al., 2006). Accumulation rates ~70 376 

cm∙ka−1 are in agreement with the rates we calculated based on 137Cs and G. sacculifer 377 



abundance in cores 520May12, 707Aug11 and 720Jan13 but are lower than the rates we 378 

calculated in the same cores based on 210Pbex. Sedimentation rates in northern GOA were also 379 

calculated by Pittauerová et al. (2014) in six short cores based on 210Pbex and 137Cs 380 

measurements. Their calculated 210Pbex sedimentation rates were higher than the rates 381 

calculated in the present study since they separated sedimentation and bioturbation into two 382 

equations and did not include a mixing term in their 210Pbex sedimentation model. Pittauerová 383 

et al. (2014) also attempted to calculate 137Cs sedimentation rates in the same cores by assuming 384 

it arrived as a single 1963 spike. This calculation produced very low sedimentation rates which 385 

they considered to be unrealistic. 386 

Variations in northern GOA sediment accumulation rates are a function of the local 387 

bathymetry: the lowest accumulation rates from Meteor cruise 44/3 were measured in cores 388 

GeoB 5810-3 and 5804-4, retrieved from the summit of a submerged ridge (the Ayla High) 389 

with increasing rates with water depth (Al-Rousan et al., 2004). Cores for the present study 390 

were all collected west of the Ayla High (Fig. 1). The importance of the local bathymetry in 391 

determining accumulation rates is evident by sediment accumulation rates from the present 392 

study as well (Fig. 9): accumulation rates in core 400Aug11, collected inside a submerged 393 

canyon, are ~60% higher than the accumulation rates outside that canyon (all other cores).  394 

Bioturbation coefficients calculated in the present study (Table 1) are ranging between 395 

0.5-4 cm2∙y−1 near the sediment-water interface, in general agreement with global averages 396 

from similar depths (Middelburg et al., 1997). The surface values we calculate are higher than 397 

the values calculated by Pittauerová et al. (2014), however this difference can be accounted for 398 

by the different mathematical representation we chose for the coefficient. In the present study 399 

we assumed that bioturbation rates decreased exponentially with depth. Pittauerová et al. 400 

(2014), on the other hand, assumed constant bioturbation in the top 5-8 cm. While both 401 

representations are applied frequently in the literature, the rational in representing the 402 

bioturbation coefficient as a decreasing exponent rather than a constant mixed layer value is 403 

that it follows the decrease in redox potentials: within the top five cm oxygen, nitrate and 404 

manganese oxides were all completely consumed, gradually creating unfavorable living 405 

conditions for large benthic organisms.   406 

6. Discussion 407 

 The sedimentation and mixing rate calculations presented in the previous section 408 

verified the appropriateness of the numerical model for time dependent calculations. The next 409 



step we had undertaken was to calculate how these records evolved with time based on the 410 

known history of 137Cs deposition and G. sacculifer abundance as well as a possible future 411 

scenario. The objective of these predictions was to use this recent and well-constrained case 412 

study as a tool for the interpretation of high resolution sedimentary records across sharp 413 

transitions. 414 

6.1 Predictions of future Globigerinoides sacculifer sedimentary profiles   415 

 The first scenario we consider is the evolution of the sedimentary record following the 416 

disappearance of a major planktonic species. A reconstruction of the G. sacculifer profile 417 

following its disappearance from the water column is presented in Fig. 10a-c. G. sacculifer’s 418 

abundance was very high and fairly constant until ~1990 when its flux to the sediment ceased 419 

following its disappearance from the water column. As a result, its abundance in the top 420 

sediments is determined by mixing with deeper sediments and gradually declines. This decline 421 

appears as if it started 30 y before the disappearance event. The model was extended to predict 422 

how the profile will evolve in the future. Fig. 10d predicts that 50 y after the disappearance 423 

event G. sacculifer top core abundance will still be very high. In fact, the model predicts that 424 

the relative abundance of G. sacculifer will drop below 10% of the large foraminifera only 100 425 

y after its disappearance from the water column and below 1% ~260 y (25 cm) after its 426 

disappearance, using average sedimentation and mixing rates for the region (ω=0.1 gr∙cm−2∙y−1, 427 

D0=2 cm2∙y−1, Dx=1 cm). At this point the decline will appear to have started 3 cm before the 428 

abrupt disappearance event and gradually tail 25 cm above it. 429 

 In the second part of this simulation we consider a scenario in which G. sacculifer will 430 

re-appear in GOA’s water column in the future. G. sacculifer is highly abundant in core tops 431 

from the central and northern parts of the Red Sea (Siccha et al., 2009), meaning that it has a 432 

significant reproduction nucleus if its Red Sea populations did not suffer a similar fate to its 433 

northern GOA population. Its local disappearance from GOA coincided with a period of 434 

increased nutrient load from anthropogenic sources that were only ameliorated in 2008 (Oron 435 

et al., 2014). If indeed this was the cause for its disappearance, it is expected that its population 436 

should recover in the future. For the clarity of presentation, we placed the re-introduction event 437 

50 y after the disappearance to allow the abundance to decrease first (Fig. 10e-g). 438 

 This sequence of events will produce a minimum representing the disappearance event. 439 

However, the calculated minimum is rather weak, especially in high bioturbation cases and 440 

appears deeper in the sediment column than expected. Within the first years after the repeated 441 



appearance, bioturbation will move material from the sacculifer-rich top-core toward the 442 

minimum, fill the former minimum and shift it below the depth representing the re-introduction 443 

event. This process will continue until the minimum will escape the rapid mixing zone. The 444 

final location of the minimum stabilized in this simulation at a depth representing 20 years 445 

before the re-introduction event. The minimum itself falls between the events and does not 446 

represent any of them. The cause for this artifact is the asymmetric nature of bioturbation and 447 

physical mixing which mostly affect the uppermost sediment. In this simulation mixing rates 448 

were assumed to decay exponentially with depth. As a result, the material that accumulates 449 

close to the surface will be shifted downward by mixing while deeper material will barely be 450 

affected, resulting in uneven movement of the sedimentary matter. The minimum will be filled 451 

with G. sacculifer shells from above and a deeper layer will contain the lowest number of 452 

shells.  453 

 As shown above, bioturbation has a marked effect on the interpretation of the 454 

sedimentary record for dating appearances/disappearances of organisms by shifting both the 455 

apparent time of first appearances/disappearances and the apparent time of the peak. The 456 

Signor-Lipps effect (Signor and Lipps, 1982) may add another source of interference to this 457 

interpretation because upon approaching an extinction event the probability of detecting 458 

members of each of the species in an assemblage decreases as a result of sampling biases. 459 

Likewise, the probability of detecting the first appearance of a new species increases with time. 460 

The result of this effect may be that an abrupt disappearance event will appear as a gradual one 461 

in the record. Bioturbation on the other hand causes an organism to appear in the sedimentary 462 

record in layers that are dated to be of an older age than the time of its actual appearance and 463 

to be present in layers that are dated to be of a younger age than the time of its actual 464 

disappearance. Both bioturbation and the Signor-Lipps effect, probably complicated the 465 

interpretation of the K-T boundary mass extinction as a gradual decline (Abramovich et al., 466 

1998) or an abrupt event (Witts et al., 2015).    467 

6.2 Reconstructing the evolution of the 137Cs profile 468 

 The deposition of 137Cs occurred as a series of short term spikes (Fig. 7). This pattern 469 

creates an intermediate case between the long square wave (G. sacculifer disappearance-470 

reappearance) and single spike input functions discussed above. 137Cs was not found in the 471 

environment until the nuclear bomb experiments of 1945 (Fig. 11a). Its release rates became 472 

significant in 1952 and peaked in 1959 and 1963 (Fig. 7). The peak of 1962-4 was significantly 473 



larger than previous emissions, suppressing their peaks to form a single steep increase toward 474 

the surface (Fig 11b). The base of the increase was slightly pushed downward due to 475 

bioturbation making it appear prior to the first release of 137Cs to the environment.  During the 476 

following years the magnitude and numbers of atmospheric nuclear experiments decreased 477 

until they ceased after 1980 (UNSCEAR, 2000). In the sediment, bioturbation mixed the 1963 478 

peak upward into the new sediment that accumulated on top. This significantly lowered the 479 

magnitude of the 1963 peak but did not shift its position (Fig. 11c). The deposition of 480 

Chernobyl fallout in 1986 formed a new surface peak (Fig. 11d) that was quickly mixed 481 

downward toward the 1963 peak. This resulted in a united peak that appeared at the end of the 482 

1970’s (Fig. 11e). Adjoining of these peaks due to bioturbation explains why they could not be 483 

separated in a previous study (Pittauerová et al., 2014). Hence, similarly to the long square 484 

wave input case, the influence of bioturbation significantly altered both the shape and location 485 

of the peaks. Running the simulation with the same input function but without radioactive 486 

disintegrations shows virtually the same profile development as the radioactive case but pushes 487 

the united peak downward toward the early 1970’s since it increased the size of the 1963 peak. 488 

7.  Conclusions 489 

Our analysis of the two-layer model (see definition in section 4.3 above) indicates that 490 

in this scenario the sedimentary record preserves the locations of two original depths: 1. the 491 

location of the base of the bioturbation layer at the onset of an event. This depth is marked by 492 

the first appearance of the inert variable; and 2. Location of the base of the bioturbation layer 493 

during termination of the event. This depth is marked by the location of the peak. In practice, 494 

exponentially decreasing bioturbation is suitable for the description of short lived radioisotopes 495 

or records of high sedimentation rates while the homogeneously mixed surface layer is often 496 

used to describe 14C profiles in deep sea cores or 210Pb profiles in shelf sediments. Large 497 

anomalies in the peak location observed in the two-layer model (Guinasso and Schink, 1975; 498 

Johannessen and Macdonald, 2012; Löwemark et al., 2008) seem to be an artifact of the discrete 499 

mathematical description of bioturbation in this model as they do not faithfully represent record 500 

formation following punctuated deposition. This suggests that while the two layer model is 501 

often suitable for sedimentation rate calculations it does not provide a reliable description of 502 

the mixing activity and is therefore not recommended for use in sedimentary record 503 

reconstructions. 504 



 When bioturbation is described as a gradually decreasing function of depth, the peak of 505 

a very short term event is expected to appear in the right position (Fig. 3). However, if a similar 506 

short term event repeats while the first spike is still mixed in the upper sediment, bioturbation 507 

will unify the adjacent peaks (Fig. 11). The united peak will appear at an intermediate depth 508 

that does not necessarily correlate with the actual sedimentary events. In a third case, a 509 

sedimentary event that persisted for longer time and was affected by bioturbation, the peak is 510 

etched on both sides. In this case a flat peak will turn into a sharper one in the record and the 511 

location of the peak appears between the starting and termination of the event (Fig. 10). The 512 

exact location of the peak mostly depends on the length of the event and its shape on the rate 513 

of bioturbation. The likely vertical scale of peak shifting depends on the attenuation of the 514 

bioturbation intensity with depth and will normally be smaller than 10 cm.  515 

 As a general approach to sedimentary record interpretation we join the conclusion of  516 

Johannessen and Macdonald (2012) that precise description of past events based on 517 

sedimentary records necessitates the use of a mass conservation model. Yet it is imperative to 518 

use a continuous function to describe bioturbation since the discretization of this process into 519 

mixed and unmixed layers automatically shifts the modeled event downward.  As long as a 520 

continuous function is used to describe bioturbation, the location of the peak always falls within 521 

the timeframe of the event under question. In most cases, however, it will not precisely 522 

represent the timing of initiation/ termination of the event but rather fall in between them. 523 

Another important implication of the mass balance equations used for reconstructing 524 

sedimentation history is that as long as sedimentation and bioturbation continue without 525 

interruptions no abrupt changes will appear in the record. Therefore, any abrupt change in the 526 

record requires special attention and means that the ratio between bioturbation and 527 

sedimentation rates decreased. Such changes can result for example from turbidity currents, 528 

flash floods, anoxia, and post depositional removal of the top sediments as well as many other 529 

site specific possibilities.      530 
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Glossary 539 

A abundance (%) 

a.u. arbitrary units 

C activity (Bq∙Kg−1) 

CB background counting rate (counts per second) 

CML mixed layer concentration 

CS concentration in the sedimenting layer 

Ct total counting rate (counts per second) 

D0 mixing coefficient at the sediment-water interface (cm2∙y−1) 

DB mixing coefficient (cm2∙y−1) 

Dx attenuation coefficient of the mixing intensity with depth (cm) 

dt delta t 

dx delta x 

Eγ detection efficiency 

GOA Gulf of Aqaba 

i current time step 

i-1 previous time step 

J flux (concentration∙l−2∙t−1) 

m mass (Kg) 

nML number of cells in the mixed layer 

Pγ emission probability 

t time 

x depth (cm) 

λ radioactive decay constant (y−1) 

ρs solid density (gr∙cm−3) 

φ porosity 

φs solid volume 

ω rate of sediment accumulation (gr∙cm−2∙y−1) 
210Pbex excess lead 210 (Bq∙Kg−1) 
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Figures 731 

 732 

Figure 1: Google Earth images of the study area. (a) Regional map. (b) A bathymetric map 733 

of the northern Gulf of Aqaba showing 20 m isobaths and the locations of the cores used in 734 

this study (redrawn after Tibor et al., 2010).  735 



Figure 2: Schematic representation of asymmetric transport by bioturbation (Eq. 6). While 736 

bioturbation is often expressed mathematically as a diffusive process, the bioturbation 737 

diffusion coefficient rapidly decreases from high near surface values to ~zero within a few 738 

cm. As a result, transport due to mixing close to the sediment-water interface is much larger 739 

than transport deeper in the sediment regardless of the concentration gradient (the arrows 740 

illustrate the relative size and direction of transport by bioturbation). The illustration shows 741 

how this effect will alter the shape of a symmetrical negative peak. Similarly, increased 742 

transport from above can push the peak downward and place it earlier than the modeled 743 

event.  744 



Figure 3: Calculated sedimentary profile of an inert spike after 100 y of mixing and 745 

sedimentation (red line), based on the 137Cs mixing and sedimentation rates of core 746 

400Aug11 (Table 1). The horizontal gray line represents the location and shape of the spike if 747 

sedimentary burial was the only process affecting the formation of the profile. Modeled spike 748 

length is 5000 arbitrary units distributed over a layer that precipitated in 0.5 years (~0.8 mm).  749 



Figure 4: A two layer model (a homogeneous surface layer mixed by bioturbation overlying 750 

a non-bioturbated layer) for describing the distribution and peak location of an inert 751 

sedimentary variable (black solid) in response to an abrupt disappearing (decrease to 0 752 

arbitrary concentration units, CU) and reappearing (increase to 100 CU) of this sedimentary 753 

variable (gray line). Three different durations of variable disappearance are shown: a- 1 754 

arbitrary time unit (TU) long abrupt disappearing/reappearing event;  b- 10 TU long abrupt 755 

disappearing/reappearing event; c- 20 TU long abrupt disappearing/reappearing event. The 756 

sedimentation rate in all cases is constant and hence the time is linearly correlated to depth 757 

within the core, where 50 TU marks the interface between bottom water and sediment 758 

surface; and the thickness of the bioturbation layer is equivalent to the sediment layer that 759 

accumulates during 10 TU. The gray line represents the timing and duration of the 760 

disappearing/reappearing events in each of the 3 cases and the concentration of the 761 

sedimentary variable until the disappearing event (starting at 15 TU) was taken to be 100 CU. 762 

In all 3 cases the model reveals four distinct features regarding the sedimentary record of the 763 

inert variable: 1. It starts to decrease at the bottom of the mixed layer during the time of 764 

disappearance; 2.  The minimum peak appears at the bottom of the mixed layer during time 765 

of reappearance; 3. The shorter the duration of the disappearance/reappearance event, the 766 

earlier the  “apparent” time of the minimum peak, it may even appear “earlier” than the time 767 

of the “real” disappearing event (e.g. plate a); and 4. The interval of the observed decrease in 768 

the variable (from concentration maximum to concentration minimum in the solid line) is 769 

equal to the duration of the disappearance event.    770 



Figure 5: model fit (solid line) to Globigerinoides sacculifer counts (open circles) based on 771 

the assumptions that it disappeared from the water column at 1990 and the total abundance of 772 

G. ruber and G. siphonifera in the water column remained constant.   773 

  774 



Figure 6: Model fit (solid lines) to137Cs activity concentrations in cores 400A11 and 707A11 775 

(open circles). Average counting statistic error was 30% for core 400A11 and 45% for core 776 

707A11. 137Cs activities from core 707A11 were divided by the measured 40K activities to 777 

correct for instrumental instability during the analysis of this core.  778 



Figure 7: Reconstructed 137Cs deposition history in the northern Gulf of Aqaba. Fallout data 779 

due to atmospheric nuclear testing was derived from UNSCEAR report (2000). 137Cs fallout 780 

due to the Chernobyl accident was based on the measurements of Papastefanou et al. (1995) 781 

divided by two to account for the double distance of Eilat from Chernobyl. Fallout from 782 

Fukushima-Daiichi over this region was derived from the estimate of Evangeliou et al. 783 

(2013). Since there was large longitudinal variability in bomb fallout deposition rates within 784 

the northern hemisphere (UNSCEAR, 2000) and a significant portion of the atmospheric 785 

137Cs normally reaches the ground as wet deposition (Clark and Smith, 1988), it was 786 

predicted that 137Cs deposition in this hyper arid region should be lower than the northern 787 

hemisphere average. This was confirmed in the model fit to the data which required that 788 

deposition rates in the Gulf of Aqaba were one third lower than the average northern 789 

hemisphere rates. 790 
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Figure 8: Model fit to excess 210Pb data (solid lines). Black dots are measured excess 210Pb 792 

activities; error bars mark the average difference between duplicate measurements for cores 793 

400Aug11, 707Aug11 and 720Jan13.   794 



Figure 9: A time-depth plot for the cores dated in this study assuming constant sedimentation 795 

rates. Accumulation rates used for generating the plot were the average of the rates calculated 796 

using the different dating methods (Table 1). The curvature of the lines stems from the 797 

decrease in porosity with depth (see supplementary material for porosity data). Note that the 798 

techniques applied in this work are only suitable for dating sediments from the last century. 799 
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Figure 10: Reconstructed and predicted future G. sacculifer relative abundance assuming 801 

S=0.1 gr∙cm-2∙y-1, D0=2 cm2∙y-1, Dx=1 cm. The plots were drawn for the following scenario: 802 

G. sacculifer was the dominant planktonic foraminifer until it abruptly disappeared at 1990 803 

and will not appear in the water column for 50 y. After 50 y of absence it will return to the 804 

region and quickly resume its past abundance. To eliminate the effects of compaction and 805 

moving upper boundary due to sedimentation, the model results are plotted as accumulation 806 

of sediment on top of the 1900 layer with time. Each of the vertical gridlines marks the range 807 

0-80%. a- the profile at 1990, b-2000, c-2015 (present), d-2040 (50 y after the disappearance 808 

event), e-2045 (5 y after re-appearance), f-2090 (50 y after re-appearance), g-2140 (100 y 809 

after re-appearance).  810 
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Figure 11: Reconstructed 137Cs profile development with time in core 400Aug11 showing 812 

137Cs activity in the accumulating sediments above a fixed reference depth. a-the profile at 813 

1944, b-1964, c-1985, d-1987, e-2005, f-2011. Empty circles in f are the raw data points used 814 

for sedimentation and mixing rate calculations (Fig. 6a).  815 



Table 1: Summary of calculated sediment accumulation (ω) and mixing rates by the mass 816 

balance model in the 4 cores utilized in this study from 210Pbex activity, G. sacculifer shell 817 

counts and 137Cs activity.  818 


