613 research outputs found

    Radiation hydrodynamical models of the inner rim in protoplanetary disks

    Full text link
    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host stars mass. These close planets origins are a mystery that motivates investigating protoplanetary disks central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the fronts overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.Comment: accepted for Ap

    Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet

    Get PDF
    Scattered light images of transition discs in the near-infrared often show non-axisymmetric structures in the form of wide-open spiral arms in addition to their characteristic low-opacity inner gap region. We study self-gravitating discs and investigate the influence of gravitational instability on the shape and contrast of spiral arms induced by planet-disc interactions. Two-dimensional non-isothermal hydrodynamical simulations including viscous heating and a cooling prescription are combined with three-dimensional dust continuum radiative transfer models for direct comparison to observations. We find that the resulting contrast between the spirals and the surrounding disc in scattered light is by far higher for pressure scale height variations, i.e. thermal perturbations, than for pure surface density variations. Self-gravity effects suppress any vortex modes and tend to reduce the opening angle of planet-induced spirals, making them more tightly wound. If the disc is only marginally gravitationally stable with a Toomre parameter around unity, an embedded massive planet (planet-to-star mass ratio of 10210^{-2}) can trigger gravitational instability in the outer disc. The spirals created by this instability and the density waves launched by the planet can overlap resulting in large-scale, more open spiral arms in the outer disc. The contrast of these spirals is well above the detection limit of current telescopes.Comment: Accepted for publication in MNRAS; 13 pages, 8 figure

    Lasing at the band edges of plasmonic lattices

    Get PDF
    We report room temperature lasing in two-dimensional diffractive lattices of silver and gold plasmon particle arrays embedded in a dye-doped polymer that acts both as waveguide and gain medium. As compared to conventional dielectric distributed feedback lasers, a central question is how the underlying band structure from which lasing emerges is modified by both the much stronger scattering and the disadvantageous loss of metal. We use spectrally resolved back-focal plane imaging to measure the wavelength- and angle dependence of emission below and above threshold, thereby mapping the band structure. We find that for silver particles, the band structure is strongly modified compared to dielectric reference DFB lasers, since the strong scattering gives large stop gaps. In contrast, gold particles scatter weakly and absorb strongly, so that thresholds are higher, but the band structure is not strongly modified. The experimental findings are supported by finite element and fourier modal method calculations of the single particle scattering strength and lattice extinction.Comment: 10 pages, 8 figure

    Carrier relaxation in GaAs v-groove quantum wires and the effects of localization

    Get PDF
    Carrier relaxation processes have been investigated in GaAs/AlGaAs v-groove quantum wires (QWRs) with a large subband separation (46 meV). Signatures of inhibited carrier relaxation mechanisms are seen in temperature-dependent photoluminescence (PL) and photoluminescence-excitation (PLE) measurements; we observe strong emission from the first excited state of the QWR below ~50 K. This is attributed to reduced inter-subband relaxation via phonon scattering between localized states. Theoretical calculations and experimental results indicate that the pinch-off regions, which provide additional two-dimensional confinement for the QWR structure, have a blocking effect on relaxation mechanisms for certain structures within the v-groove. Time-resolved PL measurements show that efficient carrier relaxation from excited QWR states into the ground state, occurs only at temperatures > 30 K. Values for the low temperature radiative lifetimes of the ground- and first excited-state excitons have been obtained (340 ps and 160 ps respectively), and their corresponding localization lengths along the wire estimated.Comment: 9 pages, 8 figures, submitted to Phys. Rev. B Attempted to correct corrupt figure

    Milli-arcsecond images of the Herbig Ae star HD 163296

    Full text link
    The very close environments of young stars are the hosts of fundamental physical processes, such as planet formation, star-disk interactions, mass accretion, and ejection. The complex morphological structure of these environments has been confirmed by the now quite rich data sets obtained for a few objects by near-infrared long-baseline interferometry. We gathered numerous interferometric measurements for the young star HD163296 with various interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an image independent of any a priori model to be reconstructed. Using the Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of HD 163296 in the H and K bands. We compare these images with reconstructed images obtained from simulated data using a physical model of the environment of HD 163296. We obtain model-independent HH and KK-band images of the surroundings of HD 163296. The images present several significant features that we can relate to an inclined asymmetric flared disk around HD 163296 with the strongest intensity at about 4-5 mas. Because of the incomplete spatial frequency coverage, we cannot state whether each of them individually is peculiar in any way. For the first time, milli-arcsecond images of the environment of a young star are produced. These images confirm that the morphology of the close environment of young stars is more complex than the simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape

    Jets and Outflows From Star to Cloud: Observations Confront Theory

    Full text link
    In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales (0.11020.1-10^2 au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales (10210510^2-10^5 au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales (10510610^5-10^6 au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Planet formation in the PDS 70 system: Constraining the atmospheric chemistry of PDS 70b and c

    Full text link
    Understanding the chemical link between protoplanetary disks and planetary atmospheres is complicated by the fact that the popular targets in the study of disks and planets are widely separated both in space and time. The 5 Myr PDS 70 systems offers a unique opportunity to directly compare the chemistry of a giant planet's atmosphere to the chemistry of its natal disk. To that end, we derive our current best physical and chemical model for the PDS 70 disk through forward modelling of the 12^{12}CO, C18^{18}O, and C2_2H emission radial profiles with the thermochemical code DALI and find a volatile C/O ratio above unity in the outer disk. Using what we know of the PDS 70 disk today, we analytically estimate the properties of the disk as it was 4 Myr in the past when we assume that the giant planets started their formation, and compute a chemical model of the disk at that time. We compute the formation of PDS 70b and PDS 70c using the standard core accretion paradigm and account for the accretion of volatile and refractory sources of carbon and oxygen to estimate the resulting atmospheric carbon-to-oxygen number ratio (C/O) for these planets. Our inferred C/O ratio of the gas in the PDS 70 disk indicates that it is marginally carbon rich relative to the stellar C/O = 0.44 which we derive from an empirical relation between stellar metallicity and C/O. Under the assumption that the disk has been carbon rich for most of its lifetime, we find that the planets acquire a super-stellar C/O in their atmospheres. If the carbon-rich disk is a relatively recent phenomenon (i.e. developed after the formation of the planets at 1\sim 1 Myr) then the planets should have close to the stellar C/O in their atmospheres. This work lays the groundwork to better understand the disk in the PDS 70 system as well as the planet formation scenario that produce its planets.Comment: 18 pages, 14 figures, 5 tables, accepted for publication in A&

    A Multi-Wavelength Analysis of Dust and Gas in the SR 24S Transition Disk

    Get PDF
    We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution 0.18"\lesssim0.18" (12 au radius). We perform a multi-wavelength investigation by combining new data with previous ALMA data at 0.45 mm. The visibilities and images of the continuum emission at the two wavelengths are well characterized by a ring-like emission. Visibility modeling finds that the ring-like emission is narrower at longer wavelengths, in good agreement with models of dust trapping in pressure bumps, although there are complex residuals that suggest potentially asymmetric structures. The 0.45 mm emission has a shallower profile inside the central cavity than the 1.3 mm emission. In addition, we find that the 13^{13}CO and C18^{18}O (J=2-1) emission peaks at the center of the continuum cavity. We do not detect either continuum or gas emission from the northern companion to this system (SR 24N), which is itself a binary system. The upper limit for the dust disk mass of SR 24N is 0.12M\lesssim 0.12\,M_{\bigoplus}, which gives a disk mass ratio in dust between the two components of Mdust,SR24S/Mdust,SR24N840M_{\mathrm{dust, SR\,24S}}/M_{\mathrm{dust, SR\,24N}}\gtrsim840. The current ALMA observations may imply that either planets have already formed in the SR 24N disk or that dust growth to mm-sizes is inhibited there and that only warm gas, as seen by ro-vibrational CO emission inside the truncation radii of the binary, is present.Comment: Accepted for publication in Ap

    Discrete and surface solitons in photonic graphene nanoribbons

    Full text link
    We analyze localization of light in honeycomb photonic lattices restricted in one dimension which can be regarded as an optical analog of (``armchair'' and ``zigzag'') graphene nanoribbons. We find the conditions for the existence of spatially localized states and discuss the effect of lattice topology on the properties of discrete solitons excited inside the lattice and at its edges. In particular, we discover a novel type of soliton bistability, the so-called geometry-induced bistability, in the lattices of a finite extent.Comment: three double-column pages, 5 figures, submitted for publicatio
    corecore