799 research outputs found
Lasing at the band edges of plasmonic lattices
We report room temperature lasing in two-dimensional diffractive lattices of
silver and gold plasmon particle arrays embedded in a dye-doped polymer that
acts both as waveguide and gain medium. As compared to conventional dielectric
distributed feedback lasers, a central question is how the underlying band
structure from which lasing emerges is modified by both the much stronger
scattering and the disadvantageous loss of metal. We use spectrally resolved
back-focal plane imaging to measure the wavelength- and angle dependence of
emission below and above threshold, thereby mapping the band structure. We find
that for silver particles, the band structure is strongly modified compared to
dielectric reference DFB lasers, since the strong scattering gives large stop
gaps. In contrast, gold particles scatter weakly and absorb strongly, so that
thresholds are higher, but the band structure is not strongly modified. The
experimental findings are supported by finite element and fourier modal method
calculations of the single particle scattering strength and lattice extinction.Comment: 10 pages, 8 figure
Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet
Scattered light images of transition discs in the near-infrared often show
non-axisymmetric structures in the form of wide-open spiral arms in addition to
their characteristic low-opacity inner gap region. We study self-gravitating
discs and investigate the influence of gravitational instability on the shape
and contrast of spiral arms induced by planet-disc interactions.
Two-dimensional non-isothermal hydrodynamical simulations including viscous
heating and a cooling prescription are combined with three-dimensional dust
continuum radiative transfer models for direct comparison to observations. We
find that the resulting contrast between the spirals and the surrounding disc
in scattered light is by far higher for pressure scale height variations, i.e.
thermal perturbations, than for pure surface density variations. Self-gravity
effects suppress any vortex modes and tend to reduce the opening angle of
planet-induced spirals, making them more tightly wound. If the disc is only
marginally gravitationally stable with a Toomre parameter around unity, an
embedded massive planet (planet-to-star mass ratio of ) can trigger
gravitational instability in the outer disc. The spirals created by this
instability and the density waves launched by the planet can overlap resulting
in large-scale, more open spiral arms in the outer disc. The contrast of these
spirals is well above the detection limit of current telescopes.Comment: Accepted for publication in MNRAS; 13 pages, 8 figure
Jets and Outflows From Star to Cloud: Observations Confront Theory
In this review we focus on the role jets and outflows play in the star and
planet formation process. Our essential question can be posed as follows: are
jets/outflows merely an epiphenomenon associated with star formation or do they
play an important role in mediating the physics of assembling stars both
individually and globally? We address this question by reviewing the current
state of observations and their key points of contact with theory. Our review
of jet/outflow phenomena is organized into three length-scale domains: Source
and Disk Scales ( au) where the connection with protostellar and disk
evolution theories is paramount; Envelope Scales ( au) where the
chemistry and propagation shed further light on the jet launching process, its
variability and its impact on the infalling envelope; Parent Cloud Scales
( au) where global momentum injection into cluster/cloud
environments become relevant. Issues of feedback are of particular importance
on the smallest scales where planet formation regions in a disk may be impacted
by the presence of disk winds, irradiation by jet shocks or shielding by the
winds. Feedback on envelope scales may determine the final stellar mass
(core-to-star efficiency) and envelope dissipation. Feedback also plays an
important role on the larger scales with outflows contributing to turbulent
support within clusters including alteration of cluster star formation
efficiencies (feedback on larger scales currently appears unlikely). A
particularly novel dimension of our review is that we consider results on jet
dynamics from the emerging field of High Energy Density Laboratory Astrophysics
(HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully
magnetized, hypersonic, radiative outflows.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
A Multi-Wavelength Analysis of Dust and Gas in the SR 24S Transition Disk
We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm
continuum observations of the SR 24S transition disk with an angular resolution
(12 au radius). We perform a multi-wavelength investigation by
combining new data with previous ALMA data at 0.45 mm. The visibilities and
images of the continuum emission at the two wavelengths are well characterized
by a ring-like emission. Visibility modeling finds that the ring-like emission
is narrower at longer wavelengths, in good agreement with models of dust
trapping in pressure bumps, although there are complex residuals that suggest
potentially asymmetric structures. The 0.45 mm emission has a shallower profile
inside the central cavity than the 1.3 mm emission. In addition, we find that
the CO and CO (J=2-1) emission peaks at the center of the
continuum cavity. We do not detect either continuum or gas emission from the
northern companion to this system (SR 24N), which is itself a binary system.
The upper limit for the dust disk mass of SR 24N is , which gives a disk mass ratio in dust between the two
components of . The current ALMA observations may imply that either
planets have already formed in the SR 24N disk or that dust growth to mm-sizes
is inhibited there and that only warm gas, as seen by ro-vibrational CO
emission inside the truncation radii of the binary, is present.Comment: Accepted for publication in Ap
Discrete and surface solitons in photonic graphene nanoribbons
We analyze localization of light in honeycomb photonic lattices restricted in
one dimension which can be regarded as an optical analog of (``armchair'' and
``zigzag'') graphene nanoribbons. We find the conditions for the existence of
spatially localized states and discuss the effect of lattice topology on the
properties of discrete solitons excited inside the lattice and at its edges. In
particular, we discover a novel type of soliton bistability, the so-called
geometry-induced bistability, in the lattices of a finite extent.Comment: three double-column pages, 5 figures, submitted for publicatio
Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY
The implementation of fringe tracking for optical interferometers is
inevitable when optimal exploitation of the instrumental capacities is desired.
Fringe tracking allows continuous fringe observation, considerably increasing
the sensitivity of the interferometric system. In addition to the correction of
atmospheric path-length differences, a decent control algorithm should correct
for disturbances introduced by instrumental vibrations, and deal with other
errors propagating in the optical trains. We attempt to construct control
schemes based on Kalman filters. Kalman filtering is an optimal data processing
algorithm for tracking and correcting a system on which observations are
performed. As a direct application, control schemes are designed for GRAVITY, a
future four-telescope near-infrared beam combiner for the Very Large Telescope
Interferometer (VLTI). We base our study on recent work in adaptive-optics
control. The technique is to describe perturbations of fringe phases in terms
of an a priori model. The model allows us to optimize the tracking of fringes,
in that it is adapted to the prevailing perturbations. Since the model is of a
parametric nature, a parameter identification needs to be included. Different
possibilities exist to generalize to the four-telescope fringe tracking that is
useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control
algorithm, a set of two properly working control algorithms for four-telescope
fringe tracking is constructed. The control schemes are designed to take into
account flux problems and low-signal baselines. First simulations of the
fringe-tracking process indicate that the defined schemes meet the requirements
for GRAVITY and allow us to distinguish in performance. In a future paper, we
will compare the performances of classical fringe tracking to our Kalman-filter
control.Comment: 17 pages, 8 figures, accepted for publication in A&
Milli-arcsecond images of the Herbig Ae star HD 163296
The very close environments of young stars are the hosts of fundamental
physical processes, such as planet formation, star-disk interactions, mass
accretion, and ejection. The complex morphological structure of these
environments has been confirmed by the now quite rich data sets obtained for a
few objects by near-infrared long-baseline interferometry. We gathered numerous
interferometric measurements for the young star HD163296 with various
interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an
image independent of any a priori model to be reconstructed. Using the
Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of
HD 163296 in the H and K bands. We compare these images with reconstructed
images obtained from simulated data using a physical model of the environment
of HD 163296. We obtain model-independent and -band images of the
surroundings of HD 163296. The images present several significant features that
we can relate to an inclined asymmetric flared disk around HD 163296 with the
strongest intensity at about 4-5 mas. Because of the incomplete spatial
frequency coverage, we cannot state whether each of them individually is
peculiar in any way. For the first time, milli-arcsecond images of the
environment of a young star are produced. These images confirm that the
morphology of the close environment of young stars is more complex than the
simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape
Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states
The photonic band dispersion and density of states (DOS) are calculated for
the three-dimensional (3D) hexagonal structure corresponding to a distributed
Bragg reflector patterned with a 2D triangular lattice of circular holes.
Results for the Si/SiO and GaAs/AlGaAs systems determine the optimal
parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of
the multilayer. The DOS is considerably reduced in correspondence with the
overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS
weighted with the squared electric field at a given point) has strong
variations depending on the position. Both results imply substantial changes of
spontaneous emission rates and patterns for a local emitter embedded in the
structure and make this system attractive for the fabrication of a 3D photonic
crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.
Characterization of integrated optics components for the second generation of VLTI instruments
Two of the three instruments proposed to ESO for the second generation
instrumentation of the VLTI would use integrated optics for beam combination.
Several design are studied, including co-axial and multi-axial recombination.
An extensive quantity of combiners are therefore under test in our
laboratories. We will present the various components, and the method used to
validate and compare the different combiners. Finally, we will discuss the
performances and their implication for both VSI and Gravity VLTI instruments.Comment: SPIE Astronomical Instrumentation 2008 in Marseille, France --
Equation (7) update
A low optical depth region in the inner disk of the HerbigAe star HR5999
Circumstellar disks surrounding young stars are known to be the birthplaces
of planets, and the innermost astronomical unit is of particular interest. We
present new long-baseline spectro-interferometric observations of the HerbigAe
star, HR5999, obtained in the H and K bands with the AMBER instrument at the
VLTI, and aim to produce near-infrared images at the sub-AU spatial scale. We
spatially resolve the circumstellar material and reconstruct images using the
MiRA algorithm. In addition, we interpret the interferometric observations
using models that assume that the near-infrared excess is dominated by the
emission of a circumstellar disk. We compare the images reconstructed from the
VLTI measurements to images obtained using simulated model data. The K-band
image reveals three main elements: a ring-like feature located at ~0.65 AU, a
low surface brightness region inside, and a central spot. At the maximum
angular resolution of our observations (1.3 mas), the ring is resolved while
the central spot is only marginally resolved, preventing us from revealing the
exact morphology of the circumstellar environment. We suggest that the ring
traces silicate condensation, i.e., an opacity change, in a circumstellar disk
around HR 5999. We build a model that includes a ring at the silicate
sublimation radius and an inner disk of low surface brightness responsible for
a large amount of the near-infrared continuum emission. The model successfully
fits the SED, visibilities, and closure phases, and provides evidence of a low
surface brightness region inside the silicate sublimation radius. This study
provides additional evidence that in HerbigAe stars, there is material in a low
surface brightness region, probably a low optical depth region, located inside
the silicate sublimation radius and of unknown nature.Comment: 11 pages, 10 figure
- …
