299 research outputs found
Stochastic approximations and differential inclusions II: applications
We apply the theoretical results on "stochastic approximations and differential inclusions" developed in Benaim, Hofbauer and Sorin (2005) to several adaptive processes used in game theory including: classical
and generalized approachability, no-regret potential procedures (Hart and Mas-Colell), smooth fictitious play (Fudenberg and Levine
Implied volatility of basket options at extreme strikes
In the paper, we characterize the asymptotic behavior of the implied
volatility of a basket call option at large and small strikes in a variety of
settings with increasing generality. First, we obtain an asymptotic formula
with an error bound for the left wing of the implied volatility, under the
assumption that the dynamics of asset prices are described by the
multidimensional Black-Scholes model. Next, we find the leading term of
asymptotics of the implied volatility in the case where the asset prices follow
the multidimensional Black-Scholes model with time change by an independent
increasing stochastic process. Finally, we deal with a general situation in
which the dependence between the assets is described by a given copula
function. In this setting, we obtain a model-free tail-wing formula that links
the implied volatility to a special characteristic of the copula called the
weak lower tail dependence function
The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications
The statement of the mean field approximation theorem in the mean field
theory of Markov processes particularly targets the behaviour of population
processes with an unbounded number of agents. However, in most real-world
engineering applications one faces the problem of analysing middle-sized
systems in which the number of agents is bounded. In this paper we build on
previous work in this area and introduce the mean drift. We present the concept
of population processes and the conditions under which the approximation
theorems apply, and then show how the mean drift is derived through a
systematic application of the propagation of chaos. We then use the mean drift
to construct a new set of ordinary differential equations which address the
analysis of population processes with an arbitrary size
Activity of the antiarrhythmic drug amiodarone against Leishmania (L.) infantum: an in vitro and in vivo approach
<div><p>Abstract Background: Considering the high toxicity and limited therapies available for treating visceral leishmaniasis (VL), the drug repositioning approach represents a faster way to deliver new therapies to the market. Methods: In this study, we described for the first time the activity of a potent antiarrhythmic, amiodarone (AMD), against L. (L.)infantum and its in vitro and in vivo activity. Results: The evaluation against promastigotes has shown that amiodarone presents leishmanicidal effect against the extracellular form, with an IC50 value of 10 μM. The activity was even greater against amastigotes in comparison with promastigotes with an IC50 value of 0.5 μM. The selectivity index in relation to the intracellular form demonstrated that the antiparasitic activity was approximately 56 times higher than its toxicity to mammalian cells. Investigation of the in vivo AMD activity in the L. infantum-infected hamster model showed that 51 days after the initial infection, amiodarone was unable to reduce the parasite burden in the spleen and liver when treated for 10 consecutive days, intraperitoneally, at 50 mg/kg/day, as determined by qPCR. Although not statistically significant, AMD was able to reduce the parasite burden by 20% in the liver when treated for 10 consecutive days, orally, at 100 mg/kg/day; no reduction in the spleen was found by qPCR. Conclusions: Our findings may help further drug design studies seeking new AMD derivatives that may provide new candidates with an in vitro selectivity close to or even greater than that observed in the prototype delivering effectiveness in the experimental model of VL.</p></div
Crafting the Composite Garment: The role of hand weaving in digital creation
There is a growing body of practice-led textile research, focused on how digital technologies can inform new design and production strategies that challenge and extend the field. To date, this research has emphasized a traditional linear transition between hand and digital production; with hand production preceding digital as a means of acquiring the material and process knowledge required to negotiate technologies and conceptualize designs. This paper focuses on current Doctoral research into the design and prototyping of 3D woven or 'composite' garments and how the re-learning, or reinterpreting, of hand weaving techniques in a digital Jacquard format relies heavily on experiential knowledge of craft weaving skills. Drawing parallels between hand weaving and computer programming, that extend beyond their shared binary (pixel-based) language, the paper discusses how the machine-mediated experience of hand weaving can prime the weaver to ‘think digitally’ and make the transition to digital production. In a process where the weaver acts simultaneously as designer, constructor and programmer, the research explores the inspiring, but often indefinable space between craft and digital technology by challenging the notion that 'the relationship between hand, eye and material’ naturally precedes the use of computing (Harris 2012: 93). This is achieved through the development of an iterative working methodology that encompasses a cycle of transitional development, where hand weaving and digital processes take place in tandem, and techniques and skills are reinterpreted to exploit the advantages and constraints of each construction method. It is argued that the approach challenges the codes and conventions of computer programming, weaving and fashion design to offer a more sustainable clothing solution
Stochastic Approximation to Understand Simple Simulation Models
This paper illustrates how a deterministic approximation of a stochastic process
can be usefully applied to analyse the dynamics of many simple simulation models. To
demonstrate the type of results that can be obtained using this approximation, we present two
illustrative examples which are meant to serve as methodological references for researchers
exploring this area. Finally, we prove some convergence results for simulations of a family
of evolutionary games, namely, intra-population imitation models in n-player games with
arbitrary payoffs.Ministerio de Educación (JC2009- 00263), Ministerio de Ciencia e Innovación (CONSOLIDER-INGENIO 2010: CSD2010-00034, DPI2010-16920
Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity.
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape
The impact of occupational exposures on chronic rhinosinusitis: a scoping review
Chronic rhinosinusitis (CRS) is a prevalent and burdensome condition worldwide, characterized by inflammation of the paranasal sinuses. Ideally, instead of treating CRS, we would identify ways to prevent the development of this chronic condition. Occupational exposures may be an excellent target for prevention. Occupational exposures have been shown to play a critical role in the pathogenesis of multiple lower airway diseases, such as asthma, silicosis, asbestosis, and hypersensitivity pneumonitis. However, evidence for the association between occupational exposures and the development of upper airway disease, like CRS, is less well-defined. This manuscript examines the association between occupational exposures and CRS. A scoping review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines identified 19 relevant studies. The populations examined and the methods and criteria used for defining CRS diagnosis and occupational variables significantly varied between the studies. Diagnosis of CRS was most often determined by self-reported symptoms or medical record review. Occupational variables ranged from employment status to occupation type to specific exogenous compounds encountered. Overall, substantial evidence demonstrates a general association between occupational exposures and CRS diagnosis; however, limitations in study methodologies, including variations in CRS diagnostic criteria, occupational exposures, assessment methods, and populations, hinder drawing more specific conclusions. Moving forward, rigorous research methodologies and standardized criteria are essential to draw conclusions supported by multiple studies. Critical components of future studies should include large, diverse populations, use of consensus CRS diagnostic criteria, and inclusion of many specific and quantitatively defined exposures. Ultimately, such efforts can help inform preventative measures and interventions for CRS, thus mitigating the burden of CRS on individuals and populations worldwide
A calmodulin-activated (Ca2+-Mg2+)-ATPase is involved in Ca2+ transport by plasma membrane vesicles from Trypanosoma cruzi
- …
