
Stochastic Approximations and Differential

Inclusions.

Part II: Applications ∗

Michel Benäım
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Abstract

We apply the theoretical results on “stochastic approximations and
differential inclusions” developed in Benäım, Hofbauer and Sorin (2005)
to several adaptive processes used in game theory including: classical
and generalized approachability, no-regret potential procedures (Hart
and Mas-Colell), smooth fictitious play (Fudenberg and Levine).

Keywords: Stochastic approximation, differential inclusions, set valued dynamical

systems, approachability, no regret, consistency, smooth fictitious play.

1 Introduction

The first paper of this series (Benäım, Hofbauer and Sorin, 2005), henceforth
referred to as BHS, was devoted to the analysis of the long term behavior of a
class of continuous paths called perturbed solution that are obtained as certain
perturbations of trajectories solutions to a differential inclusion in R

m

ẋ ∈M(x). (1)

A fundamental and motivating example is given by (continuous time linear
interpolation of) discrete stochastic approximations of the form

Xn+1 −Xn = an+1Yn+1 (2)

with
E(Yn+1 | Fn) ∈M(Xn)

where n ∈ N, an ≥ 0,
∑

n an = +∞ and Fn is the σ-algebra generated by
(X0, . . . , Xn), under conditions on the increments {Yn} and the coefficients {an}.
For example if:

(i) supn | Yn+1 − E(Yn+1 | Fn) |<∞, and

(ii) an = o( 1
log(n)

)

the interpolation of a process {Xn} satisfying (2) is almost surely a perturbed
solution of (1).
Following the dynamical system approach to stochastic approximations initiated
by Benäım and Hirsch (Benäım (1996, 1999); Benäım and Hirsch (1996, 1999))
it was shown in BHS that the set of limit points of a perturbed solution is a
compact invariant attractor free set for the set-valued dynamical system induced
by (1).
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From a mathematical viewpoint, this type of property is a natural generalization
of Benäım and Hirsch’s previous results.1 In view of applications, it is strongly
motivated by a large class of problems, especially in game theory, where the use
of differential inclusions is unavoidable since one deals with unilateral dynamics
where the strategies chosen by a player’s opponents (or nature) are unknown
to this player.
In BHS a few applications where given: 1) in the framework of approachability
theory (where one player aims at controlling the asymptotic behavior of the
Cesaro mean of a sequence of vector payoffs corresponding to the outcomes of a
repeated game) and 2) for the study of fictitious play (where each player uses,
at each stage of a repeated game, a move which is a best reply to the past
frequencies of moves of the opponent).

The purpose of the current paper is to explore much further the range of
possible applications of the theory and to convince the reader that it provides
a unified and powerful approach to several questions such as approachability or
consistency (no regret). The price to pay is a bit of theory, but as a reward we
obtain neat and simpler (sometime much simpler...) proofs of numerous results
arising in different contexts.

The general structure for the analysis of such discrete time dynamics relies
on the identification of a state variable for which the increments satisfies an
equation like (2). This requires in particular vanishing step size (for example
the state variable will be a time average—of payoffs or moves—) and a Markov
property for the conditional law of the increments (the behavioral strategy will
be a function of the state variable).

The organization of the paper is as follows. Section 2 summarizes the re-
sults of BHS that will be needed here. In section 3 we first consider generalized
approachability, where the parameters are a correspondence N and a potential
function Q adapted to a set C and extend results obtained by Hart and Mas-
Colell (2001a). In Section 4 we deal with (external) consistency (or no regret):
the previous set C is now the negative orthant and an approachability strat-
egy is constructed explicitely through a potential function P , following Hart
and Mas-Colell (2001a). A similar approach (Section 5) allows also to recover
conditional (or internal) consistency properties via generalized approachability.
The next section 6 shows analogous results for an alternative dynamics: smooth
fictitious play. This allows to retrieve and extend certain properties obtained by
Fudenberg and Levine (1995, 1999) on consistency and conditional consistency.
Section 7 deals with several extensions of the previous to the case where the

1Benäım and Hirsch’s analysis was restricted to asymptotic pseudo trajectories (perturbed
solutions) of differential equations and flows.
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information available to a player is reduced, and section 8 applies to results
recently obtained by Benäım and BenArous (2003).

2 General framework and previous results

Consider the differential inclusion (1). All the analysis will be done under the
following condition, which corresponds to Hypothesis 1.1 in BHS:

Hypothesis 2.1 (Standing assumptions) M is an upper semi continuous
correspondence from R

m to itself, with compact convex non–empty values and
which satisfies the following growth condition. There exists c > 0 such that for
all x ∈ R

m

sup
z∈M(x)

‖z‖ ≤ c (1 + ‖x‖).

Here ‖ · ‖ denotes any norm on R
m.

Remark These conditions are quite standard and such correspondences are some-

times called Marchaud maps (see Aubin (1991), p. 62). Note also that in most of our

applications one has M(x)⊂K0 where K0 is a given compact set, so that the growth

condition is automatically satisfied.

In order to state the main results of BHS that will be used here, we first
recall some definitions and notation.
The set–valued dynamical system {Φt}t∈R induced by (1) is defined by

Φt(x) = {x(t) : x is a solution to (1) with x(0) = x}

where a solution to the differential inclusion (1) is an absolutely continuous
mapping x : R → R

m satisfying

dx(t)

dt
∈M(x(t))

for almost every t ∈ R.
Given a set of times T ⊂ R and a set of positions V ⊂ R

m

ΦT (V ) =
⋃

t∈T

⋃

v∈V

Φt(v)

denote the set of possible values, at some time in T , of trajectories being in V
at time 0.
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Given a point x ∈ R
m we let

ωΦ(x) =
⋂

t≥0

Φ[t,∞)(x)

denote its ω–limit set (where as usual the bar stands for the closure operator).
The corresponding notion for a set Y, denoted ωΦ(Y ), is defined similarly with
Φ[t,∞)(Y ) instead of Φ[t,∞)(x).
A set A is said invariant if, for all x ∈ A there exists a solution x with x(0) = x
such that x(R) ⊂ A, and strongly positively invariant if Φt(A) ⊂ A for all t > 0.
A non–empty compact set A is called an attracting set if there exists a neigh-
borhood U of A and a function t from (0, ε0) to R

+ with ε0 > 0 such that

Φt(U) ⊂ Aε

for all ε < ε0 and t ≥ t(ε), where Aε stands for the ε−neighborhood of A. This
corresponds to a strong notion of attraction, uniform with respect to the initial
conditions and the feasible trajectories.
If additionally A is invariant, then A is called an attractor.
Given an attracting set (resp. attractor) A, its basin of attraction is the set

B(A) = {x ∈ R
m : ωΦ(x) ⊂ A}.

When B(A) = R
m, we call A a globally attracting set (resp. a global attractor).

Remark The following terminology is sometimes used in the literature. A set A
is said asymptotically stable if it is

(i) invariant,

(ii) Lyapounov stable, i.e., for every neighborhood U of A there exists a neighborhood
V of A such that its forward image Φ[0,∞)(V ) satisfies Φ[0,∞)(V ) ⊂ U , and

(iii) attractive, i.e., its basin of attraction B(A) is a neighborhood of A.

However, as shown in (BHS, Corollary 3.18) attractors and compact asymptotically

stable sets coincide.

Given a closed invariant set L, the induced dynamical system ΦL is defined
on L by

ΦL
t (x) = {x(t) : x is a solution to (1) with x(0) = x and x(R) ⊂ L}.
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A set L is said attractor free if there exists no proper subset A of L which is an
attractor for ΦL.

We now turn to the discrete random perturbations of (1) and consider, on
a probability space (Ω,F , P ), random variables Xn, n ∈ N, with values in R

m,
satisfying the difference inclusion

Xn+1 −Xn ∈ an+1[M(Xn) + Un+1] (3)

where the coefficients an are nonnegative numbers with

∑

n

an = +∞.

Such a process {Xn} is a Discrete Stochastic Approximation (DSA) of the dif-
ferential inclusion (1) if the following conditions on the perturbations {Un} and
the coefficients {an} hold:

(i) E(Un+1 | Fn) = 0 where Fn is the σ-algebra generated by (X1, · · · , Xn),

(ii) (a) supn E(‖Un+1‖
2) <∞ and

∑

n a
2
n < +∞ or

(b) supn ‖Un+1‖ < K and an = o( 1
log(n)

).

Remark More general conditions on the characteristics (an, Un) can be found in

(BHS, Proposition 1.4).

A typical example is given by equations of the form (2) by letting

Un+1 = Yn+1 − E(Yn+1 | Fn).

Given a trajectory {Xn(ω)}n≥1, its set of accumulation points is denoted
by L(ω) = L({Xn(ω)}). The limit set of the process {Xn} is the random set
L = L({Xn}).

The principal properties established in BHS express relations between limit
sets of DSA and attracting sets through the following results involving internally
chain transitive (ICT) sets. (We do not define ICT sets here, see BHS Section
3.3, since we only use the fact that they satisfy Properties 2 and 4 below).

Property 1 The limit set L of a bounded DSA is almost surely an ICT set.
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This result is in fact stated in BHS for the limit set of the continuous time
interpolated process but under our conditions both sets cöıncide.

Properties of the limit set L will then be obtained through the next result
(BHS, Lemma 3.5, Proposition 3.20 and Theorem 3.23):

Property 2 (i) ICT sets are non–empty, compact, invariant and attractor
free.

(ii) If A is an attracting set with B(A) ∩ L 6= ∅ and L is ICT, then L ⊂ A.

Some useful properties of attracting sets or attractors are the two following
(BHS, Propositions 3.25 and 3.27).

Property 3 (Strong Lyapounov) Let Λ ⊂ R
m be compact with a bounded

open neighborhood Uand V : U → [0,∞[. Assume the following conditions:

(i) U is strongly positively invariant,

(ii) V −1(0) = Λ,

(iii) V is continuous and for all x ∈ U \ Λ, y ∈ Φt(x) and t > 0, V (y) < V (x).

Then Λ contains an attractor whose basin contains U.
The map V is called a strong Lyapounov function associated to Λ.

Let Λ ⊂ R
m be a set and U ⊂ R

m an open neighborhood of Λ. A continuous
function V : U → R is called a Lyapunov function for Λ ⊂ R

m if V (y) < V (x)
for all x ∈ U \ Λ, y ∈ Φt(x), t > 0; and V (y) ≤ V (x) for all x ∈ Λ, y ∈ Φt(x)
and t ≥ 0.

Property 4 (Lyapounov) Suppose V is a Lyapunov function for Λ. Assume
that V (Λ) has an empty interior. Then every internally chain transitive set
L ⊂ U is contained in Λ and V |L is constant.

3 Generalized approachability: a potential ap-

proach

We follow here the approach of Hart and Mas-Colell (2001a, 2003). Throughout
this section C is a closed subset of R

m andQ is a ‘potential function’ that attains
its minimum on C. Given a correspondence N we consider a dynamical system
defined by

ẇ ∈ N(w) − w. (4)
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We provide two sets of conditions on N and Q that imply convergence of the
solutions to (4) and of the corresponding DSA to the set C. When applied
in the approachability framework (Blackwell, 1956) this will extend Blackwell’s
property.

Hypothesis 3.1 Q is a C1 function from R
m to R such that

Q ≥ 0 and C = {Q = 0}

and N is a correspondence satisfying the standard hypothesis 2.1.

3.1 Exponential convergence

Hypothesis 3.2 There exists some positive constant B such that for w ∈
R
m \ C

〈∇Q(w), N(w) − w〉 ≤ −B Q(w),

meaning 〈∇Q(w), w′ − w〉 ≤ −B Q(w) for all w′ ∈ N(w).

Theorem 3.3 Let w(t) be a solution of (4). Under hypotheses 3.1 and 3.2,
Q(w(t)) goes to zero at exponential rate and the set C is a globally attracting
set.

Proof: If w(t) /∈ C

d

dt
Q(w(t)) = 〈∇Q(w(t)), ẇ(t)〉,

hence
d

dt
Q(w(t)) ≤ −B Q(w(t)),

so that
Q(w(t)) ≤ Q(w(0))e−Bt.

This implies that, for any ε > 0, any bounded neighborhood V of C satisfies
Φt(V ) ⊂ Cε, for t large enough.
Alternatively, Property 3 applies to the forward image W = Φ[0,∞)(V ).

Corollary 3.4 Any bounded DSA of (4) converges a.s. to C.

Proof: Being a DSA implies Property 1. C is a global attracting set, thus
Property 2 applies. Hence the limit set of any DSA is a.s. included in C.
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3.2 Application: approachability

Following again Hart and Mas-Colell (2001a) and (2003) and assuming hypoth-
esis 3.2, we show here that the above property extends Blackwell’s approacha-
bility theory (Blackwell, 1956; Sorin, 2002) in the convex case. (A first approach
can be found in BHS, §5.)

Let I and L be two finite sets of moves. Consider a two-person game with
vector payoffs described by an I×L matrix A with entries in R

m. At each stage
n + 1, knowing the previous sequence of moves hn = (i1, `1, ..., in, `n) player 1
(resp. 2) chooses in+1 in I (resp. `n+1 in L). The corresponding stage payoff is
gn+1 = Ain+1,`n+1

and ḡn = 1
n

∑n
m=1gm denotes the average of the payoffs until

stage n. Let X = ∆(I) denote the simplex of mixed moves (probabilities on
I) and similarly Y = ∆(L). Hn = (I × L)n denotes the space of all possible
sequences of moves up to time n. A strategy for player 1 is a map

σ :
⋃

n

Hn → X, hn ∈ Hn → σ(hn) = (σi(hn))i∈I

and similarly τ :
⋃

nHn → Y for player 2. A pair of strategies (σ, τ) for the
players specifies at each stage n+ 1 the distribution of the current moves given
the past according to the formulae:

P (in+1 = i, `n+1 = ` | Fn)(hn) = σi(hn)τ`(hn),

where Fn is the σ-algebra generated by hn. It then induces a probability on the
space of sequences of moves (I × L)N denoted Pσ,τ .
For x in X we let xA denote the convex hull of the family {xA` =

∑

i∈I xiAi`; ` ∈
L}. Finally d(., C) stands for the distance to the closed set C: d(x, C) =
infy∈C d(x, y).

Definition 3.5 Let N be a correspondence from R
m to itself. A function x̃

from R
m to X is N-adapted if

x̃(w)A ⊂ N(w), ∀w /∈ C.

Theorem 3.6 Assume hypotheses 3.1, 3.2 and that x̃ is N-adapted. Then any
strategy σ of player 1 that satisfies σ(hn) = x̃(ḡn) at each stage n, whenever
ḡn /∈ C, approaches C: explicitly, for any strategy τ of player 2,

d(ḡn, C)→0 Pσ,τ a.s.
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Proof: The proof proceeds in 2 steps.
First we show that the discrete dynamics associated to the approachability
process is a DSA of (4), like in BHS §2 and §5. Then we apply the previous
Corollary 3.4. Explicitly, the sequence of outcomes satisfy:

ḡn+1 − ḡn =
1

n + 1
(gn+1 − ḡn).

By the choice of player 1’s strategy Eσ,τ (gn+1 | Fn) = γn belongs to x̃(ḡn)A ⊂
N(ḡn), for any strategy τ of player 2. Hence one writes

ḡn+1 − ḡn =
1

n+ 1
(γn − ḡn + (gn+1 − γn))

which shows that {ḡn} is a DSA of (4) (with an = 1/n and Yn+1 = gn+1 − ḡn,
so that E(Yn+1 | Fn) ∈ N(ḡn) − ḡn). Then Corollary 3.4 applies.

Remark The fact that x̃ is N -adapted implies that the trajectories of the deter-

ministic continuous time process when player 1 follows x̃ are always feasible under N

— while N might be much more regular and easier to study.

Convex case

Assume C convex. Let us show that the above analysis covers Blackwell (1956)’s
original framework . Recall that Blackwell’s sufficient condition for approacha-
bility states that, for any w /∈ C, there exists x(w) ∈ X with:

〈w − ΠC(w), x(w)A− ΠC(w)〉 ≤ 0 (5)

where ΠC(w) denotes the projection of w on C.
Convexity of C implies the following property:

Lemma 3.7 Let Q(w) = ‖w − ΠC(w)‖2
2, then Q is C1 with ∇Q(w) = 2(w −

ΠC(w)).

Proof: We simply write ‖w‖2 for the square of the L2 norm.

Q(w + w′) −Q(w) = ‖w + w′ − ΠC(w + w′)‖2 − ‖w − ΠC(w)‖2

≤ ‖w + w′ − ΠC(w)‖2 − ‖w − ΠC(w)‖2

= 2〈w′, w − ΠC(w)〉 + ‖w′‖2.
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Similarly

Q(w + w′) −Q(w) ≥ ‖w + w′ − ΠC(w + w′)‖2 − ‖w − ΠC(w + w′)‖2

= 2〈w′, w − ΠC(w + w′)〉 + ‖w′‖2.

C being convex, ΠC is continuous (1 Lipschitz), hence there exists two constants
c1 and c2 such that

c1‖w
′‖2 ≤ Q(w + w′) −Q(w) − 2〈w′, w − ΠC(w)〉 ≤ c2‖w

′‖2.

Thus Q is C1 and ∇Q(w) = 2(w − ΠC(w)).

Proposition 3.8 If player 1 uses a strategy σ which, at each position ḡn = w,
induces a mixed move x(w) satisfying Blackwell’s condition (5), then approach-
ability holds: for any strategy τ of player 2,

d(ḡn, C)→0 Pσ,τ a.s.

Proof: Let N(w) be the intersection of A, the convex hull of the family {Ai`; i ∈
I, ` ∈ L}, with the closed half space {θ ∈ R

m; 〈w − ΠC(w), θ − ΠC(w)〉 ≤ 0}.
Then N is u.s.c. by continuity of ΠC , and (5) makes x N -adapted. Furthermore,
the condition

〈w − ΠC(w), N(w) − ΠC(w)〉 ≤ 0

can be rewritten as

〈w − ΠC(w), N(w) − w〉 ≤ −‖w − ΠC(w)‖2

which is

〈
1

2
∇Q(w), N(w) − w〉 ≤ −Q(w)

with Q(w) = ‖w−ΠC(w)‖2, by the previous Lemma 3.7. Hence hypotheses 3.1
and 3.2 hold and Theorem 3.6 applies.

Remark

(i) The convexity of C was used to get the property of ΠC , hence of Q (C1) and of
N (u.s.c.).
Define the support function of C on R

m by:

wC(u) = sup
c∈C

〈u, c〉.
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The previous condition of hypothesis 3.2 holds in particular if Q satisfies:

〈∇Q(w), w〉 − wC(∇Q(w)) ≥ B.Q(w), (6)

and N fulfills the following inequality:

〈∇Q(w), N(w)〉 ≤ wC(∇Q(w)) ∀w ∈ R
m \ C (7)

which are the original conditions of Hart and Mas-Colell (2001a, p. 34).

(ii) Blackwell (1956) obtains also a speed of convergence of n−1/2 for the expectation
of the distance: ρn = E(d(ḡn, C)). This corresponds to the exponential decrease
ρ2
t = Q(x(t)) ≤ Le−t since in the DSA, stage n ends at time tn =

∑

m≤n 1/m ∼
log(n).

(iii) BHS proves results very similar to Proposition 3.8 (Corollaries 5.1 and 5.2 in
BHS) for arbitrary (i.e non necessarily convex) compact sets C but under a
stronger separability assumption.

3.3 Slow convergence

We follow again Hart and Mas-Colell (2001a) in considering a hypothesis weaker
than 3.2.

Hypothesis 3.9 Q and N satisfy, for w∈R
m \ C:

〈∇Q(w), N(w) − w〉 < 0.

Remark This is in particular the case if C is convex, inequality (7) holds, and
whenever w /∈ C:

〈∇Q(w), w〉 > wC(∇Q(w)) (8)

(A closed half space with exterior normal vector ∇Q(w) contains C and N(w) but

not w, see Hart and Mas-Colell (2001a) p.31).

Theorem 3.10 Under hypotheses 3.1 and 3.9, Q is a strong Lyapounov func-
tion for (4).

Proof: Using hypothesis 3.9, one obtains if w(t)/∈C:

d

dt
Q(w(t)) = 〈∇Q(w(t)), ẇ(t)〉 = 〈∇Q(w(t)), N(w(t)) − w(t)〉 < 0.
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Corollary 3.11 Assume hypotheses 3.1 and 3.9. Then any bounded DSA of
(4) converges a.s. to C.
Furthermore, theorem 3.6 applies when hypothesis 3.2 is replaced by hypothesis
3.9.

Proof: Follows from Properties 1, 2 and 3. The set C contains a global attrac-
tor, hence the limit set of a bounded DSA is included in C.

We summarize the different geometrical conditions:

(z)

z

C

N(z)

ΠC

Condition (5)
The hyperplane through ΠC(z) orthogonal to z − ΠC(z) separates z and

N(z) (Blackwell, 1956).
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{Q=Q(z)}

z

C

N(z)

Conditions (7) and (8)
The supporting hyperplane to C with orthogonal direction ∇Q(z) separates

N(z) from z (Hart and Mas-Collel, 2000).

N(z)

z

C
{Q=Q(z)}

Condition of hypothesis 3.9
N(z) belongs to the interior of the half space defined by the exterior normal

vector ∇Q(z) at z.
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4 Approachability and consistency

We consider here a framework where the previous set C is the negative orthant
and the vector of payoffs describes the vector of regrets in a strategic game,
see Hart and Mas-Colell (2001a), (2003). The consistency condition amounts
to the convergence of the average regrets to C. The interest of the approach is
that the same function P will be used to play the rôle of the function Q on one
hand and to define the strategy and hence the correspondence N on the other
hand. Also the procedure can be defined on the payoff space as well as on the
set of correlated moves.

4.1 No regret and correlated moves

Consider a finite game in strategic form. There are finitely many players labeled
a = 1, 2, . . . , A. We let Sa denote the finite moves set of player a, S =

∏

a S
a,

and Z = ∆(S) the set of probabilities on S (correlated moves).
Since we will consider everything from the view point of player 1 it is conve-
nient to set S1 = I,X = ∆(I) (mixed moves of player 1), L =

∏

a6=1 S
a, and

Y = ∆(L) (correlated mixed moves of player 1’s opponents) hence Z = ∆(I×L).
Throughout, X×Y is identified with a subset of Z through the natural embed-
ding (x, y) → x × y, where x × y stands for the product probability of x and
y. As usual, I (L, S) is also identified with a subset of X (Y, Z) through the
embedding k → δk. We let U : S → R denote the payoff function of player 1
and we still denote by U its linear extension to Z, and its bilinear extension to
X × Y.
Let m be the cardinality of I and R(z) denote the m-dimensional vector of
regrets for player 1 at z in Z, defined by

R(z) = {U(i, z−1) − U(z)}i∈I

where z−1 stands for the marginal of z on L. (Player 1 compares his payoff
using a given move i to his actual payoff, assuming the other players’ behavior,
z−1, given.)
Let D = R

m
− be the closed negative orthant associated to the set of moves of

player 1.

Definition 4.1 H (for Hannan’s set) is the set of probabilities in Z satisfying
the no-regret condition for player 1. Formally:

H = {z ∈ Z : U(i, z−1) ≤ U(z), ∀i ∈ I} = {z∈Z : R(z) ∈ D}.
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Definition 4.2 P is a potential function for D if it satisfies the following set
of conditions:

(i) P is a C1 nonnegative function from R
m to R,

(ii) P (w) = 0 iff w ∈ D,

(iii) ∇P (w) ≥ 0,

(iv) 〈∇P (w), w〉 > 0, ∀w /∈ D.

Definition 4.3 Given a potential P for D, the P -regret-based dynamics for
player 1 is defined on Z by

ż ∈ N(z) − z (9)

where

(i) N(z) = ϕ(R(z)) × Y ⊂ Z, with

(ii) ϕ(w) = ∇P (w)
|∇P (w)|

∈ X whenever w /∈ D and ϕ(w) = X otherwise.

Here |∇P (w)| stands for the L1 norm of ∇P (w).

Remark This corresponds to a process where only the behavior of player 1, out-

side of H, is specified. Note that even the dynamics is truly independent among the

players (”uncoupled” according to Hart and Mas Collel, see Hart (2005)) the natural

state space is the set of correlated moves (and not the product of the sets of mixed

moves) since the criteria involves the actual payoffs and not only the marginal em-

pirical frequencies.

The associated discrete process is as follows. Let sn ∈ S be the random
variable of profile of actions at stage n, and Fn the σ-algebra generated by the
history hn = (s1, . . . , sn). The average z̄n = 1

n

∑n
m=1sm satisfies:

z̄n+1 − z̄n =
1

n+ 1
[sn+1 − z̄n]. (10)

Definition 4.4 A P -regret-based strategy for player 1 is specified by the condi-
tions:

(i) For all (i, `) ∈ I × L

P(in+1 = i, `n+1 = `|Fn) = P(in+1 = i|Fn)P(`n+1 = `|Fn),
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(ii) P(in+1 = i|Fn) = ϕi(R(z̄n)) whenever R(z̄n) /∈ D, where ϕ(·) = {ϕi(·)}i∈I
is like in definition 4.3.

The corresponding discrete time process (10) is called a P -regret-based discrete
dynamics.

Clearly, one has

Proposition 4.5 The P -regret-based discrete dynamics (10) is a DSA of (9).

The next result is obvious but crucial.

Lemma 4.6 Let z = x× y ∈ X×Y ⊂ Z, then

〈x,R(z)〉 = 0.

Proof:
One has

∑

i∈I

xi[U(i, y) − U(x× y)] = 0.

4.2 Blackwell’s framework

Given w ∈ R
m, let w+ be the vector with components w+

k = max(wk, 0). Define
Q(w) =

∑

k(w
+
k )2. Note that ∇Q(w) = 2w+, hence Q satisfies the condi-

tions (i) − (iv) of definition 4.2. If Π denotes the projection on D one has
w − Π(w) = w+ and 〈w+,Π(w)〉 = 0.
In the game with vector payoff given by the regret of player 1, the set of fea-
sible expected payoffs corresponding to xA (cf. §3.2), when player 1 uses θ, is
{R(z); z = θ×z−1}. Assume that player 1 uses a Q-regret-based strategy. Since
at w = ḡn, θ(w) is proportional to ∇Q(w), hence to w+, Lemma 4.6 implies
that condition (5): 〈w − Πw, xA − Πw〉 ≤ 0 is satisfied; in fact, this quantity
reduces to: 〈w+, R(y)− Πw〉 which equals 0.
Hence a Q-regret-based strategy approaches the orthant D.

4.3 Convergence of P -regret-based dynamics

The previous dynamics in Section 3 were defined on the payoff space. Here, we
take the image by R (which is linear), of the dynamical system (9) and obtain
the following differential inclusion in R

m:

ẇ ∈ N̂(w) − w (11)
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where
N̂(w) = R(ϕ(w) × Y ).

The associated discrete dynamics to (10) is given as

w̄n+1 − w̄n =
1

n+ 1
(wn+1 − w̄n) (12)

with wn = R(zn).

Theorem 4.7 The potential P is a strong Lyapounov function associated to
the set D for (11), and similarly P ◦R to the set H for (9). Hence, D contains
an attractor for (11) and H contains an attractor for (9).

Proof: Remark that 〈∇P (w), N̂(w)〉 = 0: in fact ∇P (w) = 0 for w ∈ D, and
for w 6∈ D use Lemma 4.6. Hence for any w(t) solution to (11)

d

dt
P (w(t)) = 〈∇P (w(t)), ẇ(t)〉 = −〈∇P (w(t)),w(t)〉 < 0

and P is a strong Lyapounov function associated to D, in view of conditions
(i) − (iv) of definition 4.2. The last assertion follows from Property 3.

Corollary 4.8 Any P -regret-based discrete dynamics (10) approaches D in the
payoff space, hence H in the action space.

Proof: D (resp. H) contains an attractor for (11) whose basin of attraction
contains R(Z) (resp. Z) and the process (12) (resp. (10)) is a bounded DSA,
hence Properties 1, 2 and 3 apply.

Remark A direct proof is available as follows :
Let R the range of R and define, for w /∈ D,

N(w) = {w′∈R
m; 〈w′,∇P (w)〉 = 0}∩?R.

Hypotheses (3.1) and 3.9 are satisfied and Corollary 3.11 applies.
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5 Approachability and conditional consistency

We keep the framework of Section 4 and the notation introduced in 4.1, and
follow Hart and Mas-Colell (2000), (2001a), (2003) in studying conditional (or
internal) regrets. One constructs again an approachability strategy from an
associate potential function P . Like in the previous Section 4 the dynamics can
be defined either in the payoff space or in the space of correlated moves.

We still consider only player 1 and denote by U his payoff.
Given z = (zs)s∈S ∈ Z, introduce the family of m comparison vectors of dimen-
sion m (testing k against j with (j, k) ∈ I2)

C(j, k)(z) =
∑

`∈L

[U(k, `) − U(j, `)]z(j,`).

(This corresponds to the change in the expected gain of Player 1 at z when
replacing move j by k.) Remark that if one let (z | j) denote the conditional
probability on L induced by z given j ∈ I and z1 the marginal on I, then

{C(j, k)(z)}k∈I = z1
jR((z | j))

where we recall that R((z | j)) is the vector of regrets for player 1 at (z | j).

Definition 5.1 The set of no conditional regret (for player 1) is

C1 = {z;C(j, k)(z) ≤ 0, ∀j, k ∈ I}.

It is obviously a subset of H since

∑

j

{C(j, k)(z)}k∈I = R(z).

Property The intersection over all players a of the sets Ca is the set of cor-
related equilibria of the game.

5.1 Discrete standard case

Here we will use approachability theory to retrieve the well known fact (see
Hart and Mas-Colell (2000)) that player 1 has a strategy such that the vector
C(z̄n) converges to the negative orthant of R

m2

, where z̄n ∈ Z is the average
(correlated) distribution on S.
Given s ∈ S define the auxiliary “vector payoff” B(s) to be the m × m real
valued matrix where, if s = (j, `) ∈ I × L, hence j is the move of player 1, the
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only non-zero line is line j with entry on column k being U(k, `)−U(j, `). The
average payoff at stage n is thus a matrix Bn with coefficient

Bn(j, k) =
1

n

∑

r,ir=j

(U(k, `r) − U(j, `r)) = C(j, k)(z̄n)

which is the test of k versus j on the dates, up to stage n, where j was played.
Consider the Markov chain on I with transition matrix

Mn(j, k) =
Bn(j, k)

+

bn
,

for j 6= k where bn > maxj
∑

kBn(j, k)
+. By standard results on finite Markov

chains, Mn admits (at least) one invariant probability measure. Let µn = µ(Bn)
be such a measure. Then (dropping the subscript n)

µj =
∑

k

µkM(k, j) =
∑

k 6=j

µk
B(k, j)+

b
+ µj(1 −

∑

k 6=j

B(j, k)+

b
).

Thus b disappears and the condition writes
∑

k 6=j

µkB(k, j)+ = µj
∑

k 6=j

B(j, k)+.

Theorem 5.2 Any strategy of player 1 satisfying σ(hn) = µn is an approacha-
bility strategy for the negative orthant of R

m2

. Namely

∀j, k lim
n→∞

Bn(j, k)
+ = 0 a.s.

Equivalently, (z̄n) approaches the set of no conditional regret for player 1 :

lim
n→∞

d(z̄n, C
1) = 0.

Proof: Let Ω denote the closed negative orthant of R
m2

. In view of proposition
3.8 it is enough to prove that inequality (5)

〈b− ΠΩ(b), b′ − ΠΩ(b)〉 ≤ 0, ∀b /∈ Ω

holds for every regret matrix b′, feasible under µ = µ(b).
As usual, since the projection is on the negative orthant Ω, b−ΠΩ(b) = b+ and
〈b− ΠΩ(b),ΠΩ(b)〉 = 0. Hence it remains to evaluate

∑

j,k

B(j, k)+µj[U(k, `) − U(j, `)]

but the coefficient of U(j, `) is precisely
∑

k

B+(k, j)µk − µj
∑

k

B+(j, k) = 0

by the choice of µ = µ(b).
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5.2 Continuous general case

We first state a general property (compare Lemma 4.6):

Lemma 5.3 Given a ∈ R
m2

, let µ∈X satisfy :

∑

k: k 6=j

µka(k, j) = µj
∑

k: k 6=j

a(j, k), ∀j ∈ I

then
〈a, C(µ× y)〉 = 0, ∀y∈Y.

Proof: As above one computes:

∑

j

∑

k

a(j, k)µj[U(k, y) − U(j, y)]

but the coefficient of U(j, y) is precisely

∑

k

a(k, j)µk − µj
∑

k

a(j, k) = 0.

Let P be a potential function for Ω the negative orthant of R
m2

, for example
P (w) =

∑

ij(w
+
ij)

2, as in the standard case above.

Definition 5.4 The P -conditional regret dynamics in continuous time is de-
fined on Z by:

ż ∈ µ(z)×Y − z (13)

where µ(z) is the set of µ ∈ X that are solution to:

∑

k∈S
µk∇Pkj(C(z)) = µj

∑

k
∇Pjk(C(z))

whenever C(z) /∈ Ω (∇Pjk denotes the jk component of the gradient of P ). In
particular µ(z) = X whenever C(z) ∈ Ω.

The associated process in R
m2

is the image under C:

ẇ ∈ C(ν(w) × Y ) − w (14)

where ν(w) is the set of ν ∈ X with

∑

k∈S
νk∇Pkj(w) = νj

∑

k
∇Pjk(w).
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Theorem 5.5 The processes (13) and (14) satisfy:

C+(j, k)(z(t)) = w+
jk(t)→t→∞0.

Proof: Apply Theorem 3.10 with:

N(w) = {w′∈(Rm)2 : 〈∇P (w), w′〉 = 0} ∩ C

where C is the range C(Z) of C. Since w(t) = C(z(t)) the previous lemma 5.3
implies that ẇ(t) ∈ N(w(t)) − w(t).

The discrete processes corresponding to (13) and (14) are respectively in Z

z̄n+1 − z̄n =
1

n+ 1
[µn+1 × z−1

n+1 − z̄n + (zn+1 − µn+1 × z−1
n+1)] (15)

where µn+1 satisfies:

∑

k∈S
µkn+1∇Pkj(C(z̄n)) = µjn+1

∑

k
∇Pjk(C(z̄n))

and in R
m2

w̄n+1 − w̄n =
1

n+ 1
[C(µn+1 × z−1

n+1) − w̄n + (wn+1 − C(µn+1 × z−1
n+1)]. (16)

Corollary 5.6 The discrete processes (15) and (16) satisfy:

C+(j, k)(z̄n) = w̄jk,+
n →t→∞0 a.s.

Proof: (15) and (16) are bounded DSA of (13) and (14) and Properties 1, 2,
and 3 apply.

Corollary 5.7 If all players follow the above procedure, the empirical distribu-
tion of moves converges a.s. to the set of correlated equilibria.

6 Smooth fictitious play and consistency

We follow the approach of Fudenberg and Levine concerning consistency (1995)
and conditional consistency (1999) and deduce some of their main results (see
Theorems 6.6, 6.12 below) as corollaries of dynamical properties. Basically the
criteria are similar to the ones studied in Section 4 and 5 but the procedure
is different and based only on the previous behavior of the opponents. Like in
sections 4 and 5 we continue to adopt the point of view of player 1.

22



6.1 Consistency

Let
V (y) = max

x∈X
U(x, y).

The average regret evaluation along hn ∈ Hn is

e(hn) = en = V (yn) −
1

n

∑n

m=1
U(im, `m).

where as usual ȳn stands for the time average of (`m) up to time n. (This
corresponds to the maximal component of the regret vector R(z̄n)).

Definition 6.1 (Fudenberg and Levine, 1995) Let η > 0. A strategy σ for
player 1 is said η-consistent if for any opponents strategy τ

lim sup
n→∞

en ≤ η Pσ,τ a.s.

6.2 Smooth fictitious play

A smooth perturbation of the payoff U is a map

U ε(x, y) = U(x, y) + ερ(x), 0 < ε < ε0

such that:

(i) ρ : X → R is a C1 function with ‖ρ‖ ≤ 1,

(ii) argmaxx∈XU
ε(., y) reduces to one point and defines a continuous map

brε : Y → X

called a smooth best reply function,

(iii) D1U
ε(brε(y), y).Dbrε(y) = 0 (for example D1U

ε(., y) is 0 at brε(y). This
occurs in particular if brε(y) belongs to the interior of X).

Remark A typical example is

ρ(x) = −
∑

k

xk log xk. (17)

which leads to

brεi (y) =
exp(U(i, y)/ε)

∑

k∈I exp(U(k, y)/ε)
(18)
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as shown by Fudenberg and Levine (1995, 1999).

Let
V ε(y) = max

x
U ε(x, y) = U ε(brε(y), y).

Lemma 6.2 (Fudenberg and Levine (1999))

DV ε(y)(h) = U(brε(y), h).

Proof: One has

DV ε(y) = D1U
ε(brε(y), y).Dbrε(y) +D2U

ε(brε(y), y)

The first term is zero by condition (iii) above. For the second term one has

D2U
ε(brε(y), y) = D2U(brε(y), y)

which, by linearity of U(x, .) gives the result.

Definition 6.3 A smooth fictitious play strategy for player 1 associated to the
smooth best response function brε (in short a SFP(ε) strategy) is a strategy σε

such that
Eσε ,τ(in+1 | Fn) = brε(ȳn)

for any τ.

There are two classical interpretations of SFP(ε) strategies. One is that player
1 chooses to randomize his moves. Another one called stochastic fictitious play
(Fudenberg and Levine (1998), Benäım and Hirsch (1999)) is that payoffs are
perturbed in each period by random shocks and that player 1 plays the best
reply to the empirical mixed strategy of its opponents. Under mild assumptions
on the distribution of the shocks it was shown by Hofbauer and Sandholm (2002)
(Theorem 2.1) that this can always be seen as a SFP(ε) strategy for a suitable
ρ.

6.3 SFP and consistency

Fictitious play was initially used as a global dynamics (i.e. the behavior of each
player is specified) to prove convergence of the empirical strategies to optimal
strategies (see Brown (1951) and Robinson (1951) and for recent results BHS
Section 5.3 and Hofbauer and Sorin (2006)).
Here we deal with unilateral dynamics and consider the consistency property.
Hence the state space cannot be reduced to the product of the sets of mixed
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moves but has to incorporate the payoffs.
Explicitly, the discrete dynamics of averaged moves is

xn+1 − xn =
1

n+ 1
[in+1 − xn], yn+1 − yn =

1

n+ 1
[`n+1 − yn]. (19)

Let un = U(in, `n) be the payoff at stage n and un be the average payoff up to
stage n so that

un+1 − un =
1

n + 1
[un+1 − un]. (20)

Lemma 6.4 Assume that player 1 plays a SFP(ε) strategy. Then the process
(x̄n, ȳn, ūn) is a DSA of the differential inclusion

ω̇ ∈ N(ω) − ω (21)

where ω = (x, y, u) ∈ X×Y×R and

N(x, y, u) = {(brε(y), β, U(brε(y), β)) : β∈Y }.

Proof: To shorten notation we write E(. | Fn) for Eσε,τ (. | Fn) where τ is any
opponents strategy. By assumption E(in+1 | Fn) = brε(ȳn). Set E(`n+1 | Fn) =
βn ∈ Y. Then, by conditional independence of in+1 and `n+1, one gets that
E(un+1 | Fn) = U(brε(ȳn), βn). Hence E((in+1, `n+1, un+1) | Fn) ∈ N(xn, yn, un).

Theorem 6.5 The set {(x, y, u) ∈ X × Y × R : V ε(y) − u ≤ ε} is a global
attracting set for (21). In particular, for any η > 0, there exists ε̄ such that
for ε ≤ ε̄, lim supt→∞ V ε(y(t)) − u(t) ≤ η (i.e. continuous SFP(ε) satisfies
η-consistency.)

Proof: Let wε(t) = V ε(y(t))− u(t). Taking time derivative one obtains, using
Lemma 6.2 and (21):

ẇε(t) = DV ε(y(t)).ẏ(t) − u̇(t)

= U(brε(y(t)), β(t)) − U(brε(y(t)),y(t)) − U(brε(y(t)), β(t)) + u(t)

= u(t) − U(brε(y(t)),y(t))

= −wε(t) + ερ(σε(y(t))).

Hence
ẇε(t) + wε(t) ≤ ε

so that wε(t) ≤ ε? +Ke−t for some constant K and the result follows.
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Theorem 6.6 For any η > 0, there exists ε̄ such that for ε ≤ ε̄, SFP(ε) is η-
consistent.

Proof: The assertion follows from lemma 6.4, Property 1, Property 2 (ii) and
Theorem 6.5.

6.4 Remarks and Generalizations

The definition given here of a SFP(ε) strategy can be extended in some inter-
esting directions. Rather than developing a general theory we focus on two
particular examples.

1. Strategies based on pairwise comparison of payoffs: Suppose that
ρ is given by (17). Then, playing a SFP(ε) strategy requires for player 1 the
computation of brε(ȳn) given by (18) at each stage. In case where the cardinality
of S1 is very large (say 2N with N ≥ 10) this computation is not feasible! An
alternative feasible strategy is the following:
Assume that I is the set of vertices of a graph. Write i ∼ j when i and j are
neigbhours in this graph. Assume furthermore that the graph is symmetric (∼
is a symmetric relation) and connected (given any two points i, j ∈ I there exists
a finite sequence i1 = i, i2, . . . , im = j such that il ∼ il+1 for l = 1, . . . , m− 1).
Let N(i) = {j ∈ I \ {i} : i ∼ j}. The strategy is as follows: Let i be the action
chosen at time n (i.e. in = i). At time n + 1, player 1 picks an action j at
random in N(i). He then switches to j (i.e. in+1 = j) with probability

R(i, j, ȳn) = min

[

1,
|N(i)|

|N(j)|
exp

(

1

ε
(U(j, ȳn) − U(i, ȳn))

)]

and keeps i (i.e in+1 = i) with the complementary probability 1 − R(i, j, ȳn).
Here |N(i)| stands for the cardinal of N(i).
Note that this strategy only involves at each step the computation of the payoffs
difference (U(j, ȳn) − U(i, ȳn)) . While this strategy is not an SFP(ε) strategy,
one still has:

Theorem 6.7 For any η > 0, there exists ε̄ such that, for ε ≤ ε̄, the strategy
described above is η-consistent.

Proof: For fixed y ∈ Y, let Q(y) be the Markov transition matrix given by
Q(i, j, y) = 1

|N(i)|
R(i, j, y) for j ∈ N(i), Q(i, j, y) = 0 for j 6∈ N(i) ∪ {i}, and

Q(i, i, y)) = 1 −
∑

j 6=iQ(i, j, y). Then Q(y) is an irreducible Markov matrix
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having brε(y) as unique invariant probability: this is easily seen by check-
ing that Q(y) is reversible with respect to brε(y). That is brεi (y)Q(i, j, y) =
brεj(y)Q(j, i, y).
The discrete time process (19), (20) is not a DSA (as defined here) to (21) be-
cause E(in+1 | Fn) 6= brε(ȳn). However, the conditional law of in+1 given Fn is
Q(xn, ·, ȳn) and using the techniques introduced by Métivier and Priouret (1992)
to deal with Markovian perturbations (see e.g. Duflo 1996, Chapter 3.IV) it can
still be proved that the assumptions of Proposition 1.3 in BHS are fulfilled, from
which it follows that the interpolated affine process associated to (19), (20) is a
perturbed solution (see BHS, for a precise definition) to (21). Hence Property
1 applies and the end of the proof is similar to the proof of Theorem 6.6.

2. Convex sets of actions: Suppose that X and Y are two convex compact
subsets of finite dimensional Euclidean spaces. U is a bounded function with
U(x, .) linear on Y . The discrete dynamics of averaged moves is

xn+1 − xn =
1

n+ 1
[xn+1 − xn], yn+1 − yn =

1

n+ 1
[yn+1 − yn]. (22)

with xn+1 = brε(ȳn). Let un = U(xn, yn) be the payoff at stage n and un be
the average payoff up to stage n so that

un+1 − un =
1

n + 1
[un+1 − un]. (23)

Then the results of the previous section 6.3 still hold.

6.5 SFP and conditional consistency

We keep here the framework of Section 4 but extend the analysis from consis-
tency to conditional consistency (which is like studying external regrets (Section
4) and then internal regrets (Section 5)). Given z ∈ Z, recall that we let z1 ∈ X
denote the marginal of z on I. That is

z1 = (z1
i )i∈I with z1

i =
∑

`∈L

zi`.

Let z[i] ∈ R
L be the vector with components z[i]` = zi`. Note that z[i] belongs

to tY for some 0 ≤ t ≤ 1. A conditional probability on L induced by z given
i ∈ I satisfies

z | i = (z | i)`∈L with (z | i)`z
1
i = zi` = z[i]`.
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Let [0, 1].Y = {ty : 0 ≤ t ≤ 1, y ∈ Y }. Extend U to X × ([0, 1] × Y ) by
U(x, ty) = tU(x, y) and similarly for V . The conditional evaluation function at
z ∈ Z is

ce(z) =
∑

i∈I

V (z[i])−U(i, z[i]) =
∑

i∈I

z1
i [V (z | i)−U(i, z | i)] =

∑

i∈I
z1
i V (z|i)−U(z).

with the convention that z1
i V (z | i) = z1

i U(i, z | i) = 0 when z1
i = 0.

Like in Section 5, conditional consistency means consistency with respect to
the conditional distribution given each event of the form “i was played”. In a
discrete framework the conditional evaluation is thus

cen = ce(z̄n)

where as usual z̄n stands for the empirical correlated distribution of moves up
to stage n.
Conditional consistency is defined like consistency but with respect to (cen).
More precisely:

Definition 6.8 A strategy σ for player 1 is said η-conditionally consistent if
for any opponents strategy τ

lim sup
n→∞

cen ≤ η Pσ,τ a.s.

Given a smooth best reply function brε : Y → X, let us introduce a corre-
spondence Brε defined on [0, 1] × Y by Brε(ty)= brε(y) for 0 < t ≤ 1 and
Brε(0) = X. For z ∈ Z, let µε(z) ⊂ X denote the set of all µ ∈ X that are
solution to the equation

∑

i∈I
µib

i = µ (24)

for some vectors family {bi}i∈I such that bi ∈ Brε(z[i]).

Lemma 6.9 µε is an u.s.c correspondence with compact convex non–empty val-
ues.

Proof: For any vectors family {bi}i∈I with bi ∈ X the function µ →
∑

i∈I µib
i

maps continuously X into itself. It then has fixed points by Brouwer’s fixed
point theorem, showing that µε(z) 6= ∅. Let µ, ν ∈ µε(z). That is µ =

∑

i µib
i

and ν =
∑

i ν
ici with bi, ci ∈ Brε(z[i]). Then for any 0 ≤ t ≤ 1 tµ+ (1 − t)ν =

∑

i(tµi + (1 − t)νi)d
i with di = tµib

i+(1−t)νic
i

(tµi+(1−t)νi)
. By convexity of Brε(z[i]), di ∈

Brε(z[i]). Thus tµ+ (1 − t)ν ∈ µε(z) proving convexity of µε(z).Using the fact
that Brε has a closed graph, it is easy to show that µε has a closed graph, from
which it will follow that it is u.s.c with compact values. Details are left to the
reader.
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Definition 6.10 A conditional smooth fictitious play strategy for player 1 as-
sociated to the smooth best response function brε (in short a CSFP(ε) strategy)
is a strategy σε such that σε(hn) ∈ µε(z̄n).

The random discrete process associated to CSFP(ε) is thus defined by:

zn+1 − zn =
1

n+ 1
[zn+1 − zn] (25)

where the conditional law of zn+1 = (in+1, `n+1) given the past up to time n is
a product law σε(hn) × τ(hn). The associated differential inclusion is

ż ∈ µε(z) × Y − z. (26)

Extend brε to a map, still denoted brε, on [0, 1]× Y by choosing a non–empty
selection of Brε and define

V ε(z[i]) = U(brε(z[i]), z[i]) − εz1
i ρ(brε(z[i]))

(so that if z1
i > 0 V ε(z[i]) = z1

i V
ε(z | i) and V ε(0) = 0). Let

ceε(z) =
∑

i

(V ε(z[i]) − U(z[i])) =
∑

i

V ε(z[i]) − U(z).

The evaluation along a solution t→ z(t) to (26) is

Wε(t) = ceε(z(t)).

The next proof is in spirit similar to Section 6.3 but technically heavier.
Since we are dealing with smooth best reply to conditional events there is a
discontinuity at the boundary and the analysis has to take care of this aspect.

Theorem 6.11 The set {z ∈ Z : ceε(z) ≤ ε} is an attracting set for (26)
whose basin is Z. In particular, conditional consistency holds for continuous
CSFP(ε).

Proof: We shall compute

Ẇε(t) =
d

dt

∑

i
V ε(z[i](t)) −

d

dt
U(z(t)).

The last term is
d

dt
U(z(t)) = U(µε(t), β(t)) − U(z(t))
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by linearity, with β(t) ∈ Y and µε(t) ∈ µε(z(t)). We now pass to the first term.
First observe that

d

dt
z1
i ∈ µεi (z) − z1

i ≥ −z1
i .

Hence z1
i (t) > 0 implies z1

i (s) > 0 for all s ≥ t. It then exists τi ∈ [0,∞] such
that z1

i (s) = 0 for s ≤ τi and z1
i (s) > 0 for s > τi. Consequently the map

t → V ε(z[i](t)) is differentiable everywhere but possibly at t = τi and is zero
for t ≤ τi. If t > τi, then

d

dt
V ε(z[i](t)) =

d

dt
U ε(brε(z[i](t)), z[i](t)) − εz1

i (t)ρ(brε(z[i](t)))

= U ε(brε(z[i](t)), ż[i](t)) − ż1
i (t)ερ(brε(z[i](t))) (27)

by Lemma 6.2. If now t < τi, both ż[i](t) and d
dt
V ε(z[i](t)) are zero, so that

equality (27) is still valid.
Finally, using d

dt
zij(t) = µεi(t)βj(t) − zij(t), we get that

Ẇε(t) =
∑

i

U ε(brε(z[i](t)), µεi (t)β(t) − z[i](t))

+
∑

i

(µεi (t) − z1
i (t))ερ(brε(z[i](t))) − U(µε(t), β(t)) + U(z(t))

for all (but possibly finitely many) t ≥ 0. Replacing gives

Ẇε(t) = −Wε(t) + A(t)

where
A(t) = −U(µε(t), β(t))

+
∑

i

U ε(brε(z[i]((t)), µεi (t)β(t)) +
∑

i

µεi (t)ερ(brε(z[i](t))).

Thus one obtains:

A(t) = −U(µε(t), β(t)) +
∑

i
µεi (t) [U(brε(z[i](t)), β(t)) + ερ(brε(z[i](t)))] .

Now equation (24) and linearity of U(., y) implies

U(µε(t), β(t)) =
∑

i
µεi (t)U(brε(z[i](t)), β(t))).

Thus
A(t) = ε

∑

i

µεi (t)ρ(brε(z[i](t)))
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so that
Ẇε(t) ≤ −Wε(t) + ε

for all (but possibly finitely many) t ≥ 0. Hence

Wε(t) ≤ e−t(Wε(0) − ε) + ε

for all t ≥ 0.

Theorem 6.12 For any η > 0, there exists ε̄ > 0 such that, for ε ≤ ε̄, a
CSFP(ε) strategy is η-consistent.

Proof: Let L = L(z̄n) be the limit set of (z̄n) defined by (25). Since (z̄n) is a
DSA to (26) and {z ∈ Z : ceε(z) ≤ ε} is an attracting set for (26) whose basin
is Z (Theorem 6.11), it suffices to apply Property 2 (ii).

7 Extensions

We study in this section extensions of the previous dynamics in the case where
the information of player 1 is reduced: either he does not recall his past moves,
or he does not know the other players moves sets, or he is not told their moves.

7.1 Procedure in law

We consider here procedures where player 1 is uninformed of his previous se-
quences of moves, but know only its law (team problem).

The general framework is as follows. A discrete time process {wn} is defined
through a recursive equation by:

wn+1 − wn = an+1V (wn, in+1, `n+1) (28)

where (in+1, `n+1) ∈ I × L are the moves2 of the players at stage n + 1 and
V : R

m × I × L→ R
m is some bounded measurable map.

A typical example is given, in the framework of approachability (see section
3.2), by

V (w, i, `) = −w + Ai` (29)

where Ai` is the vector valued payoff corresponding to (i, `) and an = 1/n. In
such case wn = ḡn is the average payoff.

2For convenience, we keep the notation used for finite games but it is unnecessary to
assume here that the move spaces are finite.

31



Assume that player 1 uses a strategy (as defined in section 3.2) of the form

σ(hn) = ψ(wn)

where for each w, ψ(w) is some probability over I. Hence w plays the rôle of a
state variable for player 1 and we call such σ a ψ−strategy. Let Vψ(w) be the
range of V under σ at w, namely the convex hull of

{

∫

I

V (w, i, `)ψ(w)(di); ` ∈ L}.

Then the associated continuous time process associated to (28) is

ẇ ∈ Vψ(w). (30)

We consider now another discrete time process where, after each stage n, player
1 is not informed upon his realized move in but only upon `n. Define by induc-
tion the new input at stage n+ 1:

w∗
n+1 − w∗

n = an+1

∫

I

V (w∗
n, i, `n+1)ψ(w∗

n)(di). (31)

Remark that the range of V under ψ(w∗) at w∗ is Vψ(w∗) so that the continuous
time process associated to (31) is again (30). Explicitely (28) and (31) are DSA
of the same differential inclusion (30).

Definition 7.1 A ψ-procedure in law is a strategy σ of the form σ(hn) = ψ(w∗
n)

where for each w, ψ(w) is some probability over I and {w∗
n} is given by (31).

The key observation is that a procedure in law for player 1 is independent
on the moves of player 1 and only requires the knowledge of the map V and
the observation of the opponents moves. The interesting result is that such
a procedure will in fact induce, under certain assumptions (see hypothesis 7.2
below), the same asymptotic behavior in the original discrete process.

Suppose that player 1 uses a ψ-procedure in law. Then the coupled system
(28, 31) is a DSA to the differential inclusion

(ẇ, ẇ∗) ∈ V 2
ψ (w,w∗) (32)

where V 2
ψ (w,w∗) is the convex hull of

{(

∫

I

V (w, i, `)ψ(w∗)(di),

∫

I

V (w∗, i, `)ψ(w∗)(di)); ` ∈ L}.

We shall assume, from now on, that (32) meets the standing hypothesis 2.1.
We furthermore assume that
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Hypothesis 7.2 The map V satisfies one of the two following conditions:

(i) There exists a norm || · || such that w → w + V (w, i, `) is contracting
uniformly in s = (i, `). That is

||w + V (w, s) − (u+ V (u, s))|| ≤ ρ||w − u||

for some ρ < 1.

(ii) V is C1 in w and there exists α > 0 such that all eigenvalues of the
symmetric matrix

∂V

∂w
(w, s) +

t∂V

∂w
(w, s)

are bounded by −α.

(t stands for the transpose). Remark that hypothesis 7.2 holds trivially for (29).
Under this later hypothesis one has the following result.

Theorem 7.3 Assume that {wn, w
∗
n} is a bounded sequence. Under a ψ−procedure

in law the limit sets of {wn} and {w∗
n} coincide, and this limit set is an ICT

set of the differential inclusion (30). Under a ψ−strategy the limit set of {wn}
is also an ICT set of the same differential inclusion.

Proof: Let L be the limit set of {wn, w
∗
n}. By properties 1 and 2, L is compact

and invariant. Choose (w,w∗) ∈ L and let t → (w(t),w∗(t)) denote a solution
to (32) that lies in L (by invariance) with initial condition (w,w∗). Let u(t) =
w(t) − w∗(t).

Assume condition (i) in hypothesis 7.2. Let Q(t) = ||u(t)||. Then for all
0 ≤ s ≤ 1

Q(t + s) = ||u(t) + u̇(t)s+ o(s)|| = ||(1 − s)u(t) + (u̇(t) + u(t))s + o(s)||

≤ (1 − s)Q(t) + s||u̇(t) + u(t)|| + o(s).

Now u̇(t) + u(t) can be written as

w(t) − w∗(t) +

∫

I×L

[V (w(t), i, `) − V (w∗(t), i, `)]ψ(w∗(t))(di)dν(`)

for some probability measure ν over L. Thus by condition (i)

Q(t+ s) ≤ (1 − s)Q(t) + sρQ(t) + o(s),

33



from which it follows that

Q̇(t) ≤ (ρ− 1)Q(t)

for almost every t. Hence, for all t ≥ 0 :

Q(0) ≤ e(ρ−1)tQ(−t) ≤ e(ρ−1)tK

for some constant K. Letting t→ +∞ shows that Q(0) = 0. That is w = w∗.

Assume now condition (ii). Let || · || denote the Euclidean norm on R
m and

〈·, ·〉 the associated scalar product. Then

〈V (w, s)−V (w∗, s), w−w∗〉 =

∫ 1

0

〈∂wV (w∗ +u(w−w∗), s).(w−w∗), w−w∗〉du

≤ −
α

2
||w − w∗||2.

Therefore

d

dt
Q2(t) = 2〈w(t) − w∗(t), ẇ(t) − ẇ∗(t)〉 ≤ −αQ2(t)

from which it follows (like previously) that Q(0) = 0.
We then have proved that given hypothesis 7.2, {wn} and {w∗

n} have the same
limit set under a ψ−procedure in law. Since {w∗

n} is a DSA to (30), this limit
set is ICT for (30) by Property 1. The same property holds for {wn} under a
ψ−strategy.

Remark Let R denote the set of chain-recurrent points for (28). Hypothesis 7.2

can be weakened to the assumption that conditions (i) or (ii) are satisfied for V

restricted to R× I × L.

The previous result applies to the framework of Sections 4 and 5 and show
that the discrete regret dynamics will have the same properties when based on
the (conditional) expected stage regret ExR(s) or ExC(s).

7.2 Best prediction algorithm

Consider a situation where at each stage n an unknown vector Un (∈ [−1,+1]I)
is selected and a player chooses a component in ∈ I. Let ωn = U in

n . Assume
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that Un is announced after stage n.
Consistency is defined trough the evaluation vector Vn with V i

n = Ū i
n− ω̄n, i ∈ I,

where, as usual, Ūn is the average vector and ω̄n the average realization.
Conditional consistency is defined through the evaluation matrixWn withW jk

n =
(1/n)(

∑

m,im=j U
k
m − ωm).

This formulation is related to on line algorithms, see Foster and Vohra (1999)
for a general presentation. In the previous framework, the vector Un is U(., `n)
where `n is the choice of players other than 1 at stage n. The claim is that
all previous results go through (Vn or Wn converges to the negative orthant)
when dealing with the dynamics expressed on the payoffs space. This means
that player 1 does not need to know the payoff matrix, nor the set of moves of
the other players; only a compact range for the payoffs is requested. A sketch
of proofs is as follow.

7.2.1 Approachability: consistency

We consider the dynamics of section 4. The regret vector R∗ if i is played, is
R∗(i) = {U j − U i}j∈I . Lemma 4.6 is now for θ ∈ ∆(I)

〈θ, R∗(θ)〉 = 0

since R∗(θ), the expectation of R∗ under θ is

R∗(θ) =
∑

i∈I

θ(i)R∗(i) = {U j − 〈θ, U〉}j

hence the properties of the P -regret based dynamics on the payoff space R
m

still hold (Theorem 4.7 and Corollary 4.8).

7.2.2 Approachability: conditional consistency

The content of Section 5 extends as well. The I × I regret matrix is defined, at
stage n, given the move in, by all lines being 0 except line in which is the vector
{U j

n − U i
n}j∈J . Then the analysis is identical and the convergence of the regret

to the negative orthant holds for P -conditional regret dynamics as in Theorem
5.5 and Corollary 5.6.

7.2.3 SFP: consistency

In the framework of Section 6, the only hypothesis used on the set Y was that
it was convex compact, hence one can take L = [−1,+1]I and U(x, `) = 〈x, `〉.
Then all computations go through.
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7.2.4 SFP: conditional consistency

For the analog of Section 6.5 let us define the I × I evaluation matrix Mn at
stage n and given the move in, by all lines equal to 0 except line in being the
vector Un. Its average at stage n is M̄n. µn is an invariant measure for the
Markov matrix defined by the family BRε(M̄ i

n), where (M̄ i
n) denotes the i-line

of (M̄n).

7.3 Partial information

We consider here the framework of section 7.2 but where only ωn is observed by
player 1, not the vector Un. In a game theoretical framework, this means that
the move of the opponent at stage n is not observed by player 1 but only the
corresponding payoff U(in, `n) is known.
This problem has been studied in Auer and alii (1995), Foster and Vohra (1997),
Fudenberg and Levine (1999), Hart and Mas-Colell (2001b) and in a game
theoretical framework by Banos (1968) and Megiddo (1980) (note that working
in the framework of 7.2 is more demanding than finding an optimal strategy in
a game, since the payoffs can actually vary stage after stage).
The basic idea is to generate, from the actual history of payoffs and moves
{ωn, in} and the knowledge of the strategy σ a sequence of pseudo-vectors Ũn ∈
R
S to which the previous procedures applies.

7.3.1 Consistency

We follow Auer and alii (1995) and define Ũn by

Ũ i
n =

ωn
σin

1{i=in}

where as usual in is the component chosen at stage n and σin stands for σ(hn−1)(i).
The associated pseudo-regret vector is {R̃i

n = Ũ i
n − ωn}i∈I . Notice that

E(R̃i
n|hn−1) = U i

n − 〈σn, Un〉

hence, in particular
〈σn, E(R̃n|hn−1)〉 = 0.

To keep Ũn bounded one defines first τn adapted to the vector Ũn as in Section
7.2, namely proportional to ∇P ( 1

n−1

∑n−1
m=1 R̃m), see section 4, then σ is specified

by
σin = (1 − δ)τ in + δ/K
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for δ > 0 small enough and K being the cardinality of the set I.
The discrete dynamics is thus

¯̃Rn −
¯̃Rn+1 =

1

n
(R̃n+1 −

¯̃Rn).

The corresponding dynamics in continuous time satisfies:

ẇ(t) = α(t) − w(t)

with α(t) = Ut−〈p(t), Ut〉 for some measurable process Ut with values in [−1, 1]
and p(t) = (1 − δ)q(t) + δ/K with

∇P (w(t)) = ‖∇P (w(t))‖q(t).

Define the condition

〈∇P (w), w〉 ≥ B‖∇P (w)‖‖w+‖ (33)

on R
S \ D for some positive constant B (satisfied for example by P (w) =

∑

s(w
+
s )2).

Proposition 7.4 Assume that the potential satisfies in addition (33). Then
consistency holds for the continuous process R̃t and both discrete processes R̃n

and Rn.

Proof: One has

d

dt
P (w(t)) = 〈∇P (w(t)), ẇ(t)〉

= 〈∇P (w(t)), α(t)− w(t)〉.

Now

〈∇P (w(t)), α(t)〉 = ‖∇P (w(t))‖〈q(t), α(t)〉

= ‖∇P (w(t))‖〈
1

1− δ
pt −

δ

(1 − δ)K
,α(t)〉

≤ ‖∇P (w(t))‖
δ

(1 − δ)K
R

for some constant R since 〈p(t), α(t)〉 = 0 and the range of α is bounded. It
follows, using (33), that given ε > 0, δ > 0 small enough and ‖w+(t)‖ ≥ ε
implies

d

dt
P (w(t)) ≤ ‖∇P (w(t))‖(

δ

(1− δ)K
R −B‖w+(t)‖)

≤ −‖∇P (w(t))‖Bε/2.
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Now 〈∇P (w), w〉 > 0 for w /∈ D implies ‖∇P (w)‖ ≥ a > 0 on ‖w+‖ ≥ ε.
Let β > 0, A = {P ≤ β} and choose ε > 0 such that ‖w+‖ ≤ ε is included
A. Then the complement of A is an attracting set and consistency holds for
the process R̃t, hence as in section 4, for the discrete time process R̃n. The
result concerning the actual process Rn with Rk

n = Uk
n − ωn finally follows from

another application of Theorem 7.3 since both processes have same conditional
expectation.

7.3.2 Conditional consistency

A similar analysis holds in this framework. The pseudo regret matrix is now
defined by

C̃n(i, j) =
σin
σjn
U j
n1{j=in} − U i

n1{i=in}

hence
E(C̃n(i, j)|hn−1) = σin(U

j
n − U i

n)

and this relation allows to invoke ultimately Theorem 7.3, hence to work with
the pseudo process. The construction is similar to subsection 5.2, in particular
equation (A6). µ(w) is a solution of

∑

k

µk(w)∇kjP (w) = µj(w)
∑

k

∇jkP (w)

and player 1 uses a perturbation ν(t) = (1− δ)µ(w(t))+ δu where u is uniform.
Then the analysis is as above and leads to

Proposition 7.5 Assume that the potential satisfies in addition (33). Then
consistency holds for the continuous process C̃t and both discrete processes C̃n
and Cn.

8 A learning example

We consider here a process analyzed by Benäım and Ben Arous (2003). Let
S = {0, . . . , K},

X = ∆(S) = {x ∈ R
K+1 : xk ≥ 0,

K
∑

k=0

xk = 1}
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be the K dimensional simplex, and f = {fk}, k ∈ S a family of bounded real
valued functions on X. Suppose that a “player” has to choose an infinite se-
quence x1, x2, . . . ∈ S (identified with the extreme points of X) and is rewarded
at time n + 1 by

yn+1 = fxn+1
(x̄n)

where

x̄n =
1

n

∑

1≤m≤n

xm.

Let

ȳn =
1

n

∑

1≤m≤n

ym

denote the average payoff at time n. The goal of the player is thus to maximize
its long term average payoff lim inf ȳn. In order to analyze this system note that
the average discrete process satisfies

x̄n+1 − x̄n =
1

n
(xn+1 − x̄n),

ȳn+1 − ȳn =
1

n
(fxn+1

(x̄n) − ȳn).

Therefore, it is easily seen to be a DSA of the following differential inclusion

(ẋ, ẏ) ∈ −(x,y) +N(x,y) (34)

where (x, y) ∈ X × [α−, α+], α− = infS,X fk(x), α+ = supS,X fk(x) and N is
defined as

N(x, y) = {(θ, 〈θ, f(x)〉) : θ ∈ X}.

Definition 8.1 f has a gradient structure if, letting

gk(x1, . . . , xK) = f0(1 −
K

∑

k=1

xk, x1, . . . , xK) − fk(1 −
K

∑

k=1

xk, x1, . . . , xK)

there exists a C1 function V , defined in a neighborhood of

Z = {z ∈ R
K , z = {zk}, k = 1, . . . , K, with (x0, z) ∈ X for some x0 ∈ [0, 1]},

satisfying
∇V (z) = g(z).
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Theorem 8.2 Assume that f has a gradient structure. Then every compact
invariant set of (34) meets the graph

S = {(x, y) ∈ X × [α−, α+] : y = 〈f(x), x〉}.

Proof: We follow the computation in Benäım and Ben Arous (2003). Note
that (34) can be rewritten as

ẋ+ x ∈ X

ẏ = 〈x+ ẋ, f(x)〉 − y.

Hence

y(s+ t) − y(s)

t
=

1

t

∫ s+t

s

ẏ(u)du

=
1

t
[

∫ s+t

s

?〈f(x(u)), x(u)〉 − y(u)du+

∫ s+t

s

?〈f(x(u)), ẋ(u)〉du]

but x(u) ∈ X implies

〈f(x(u)), ẋ(u)〉 =
∑K

k=0
fk(x(u))ẋk(u)

=
∑K

k=1
[ − f0(x(u)) + fk(x(u))]ẋk(u)

= −
∑K

k=1
gk(z(u))żk(u)

= −
d

dt
V (z(u))

where z(u) ∈ R
m is defined by zk(u) = xk(u). So that

1

t

∫ s+t

s

(〈f(x(u)), x(u)〉 − y(u))du =
(y(s+ t) + V (z(s + t)) − (y(s) + V (z(s))

t

and the right hand term goes to zero uniformly (in s, y, z) as t→∞. Let now L be
a compact invariant set. Replacing L by one of its connected components we can
always assume that L is connected. Suppose that L∩S = ∅. Then (〈f(x), x〉−y)
has constant sign on L (say > 0) and, by compactness, is bounded below by a
positive number δ. Thus for any trajectory t→ (x(t), y(t)) contained in L

1

t

∫ s+t

s

(〈f(x(u)), x(u)〉 − y(u))du ≥ δ.

A contradiction.

40



Corollary 8.3 The limit set of {(x̄n, ȳn)n} meets S. In particular

lim inf ȳn ≤ sup
x∈X

〈x, f(x)〉.

If, furthermore (xn) is such that limn→∞ x̄n = x∗ then

lim
n→∞

ȳn = sup
x∈X

〈x∗, f(x∗)〉.

Proof : One uses the fact that the discrete process is a DSA hence the limit set
is invariant, being ICT by Property 2. The second part of the corollary follows
from the proof part (a) of Theorem 4 in Benäım and Ben Arous (2003).

9 Concluding remarks

The main purpose of the paper was to show that stochastic approximation tools
are extremely effective for analyzing several game dynamics and that the use
of differential inclusions is needed. Note that certain discrete dynamics do not
enter this framework: one example is the procedure of Hart and Mas-Colell
(2001a) which depends both on the average regret and on the last move. The
corresponding continuous process generates in fact a differential equation of
order 2. Moreover, as shown in Hart and Mas-Colell (2003), see also Cahn
(2004), this continuous process has regularity properties not shared by the dis-
crete counterpart.
Among the open problems not touched upon in the present work are the ques-
tions related to the speed of convergence and to the convergence to a subset of
the approachable set.
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