871 research outputs found

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    Get PDF
    The first measurements of skewness and kurtosis of mean transverse momentum (〈pT〉) fluctuations are reported in Pb–Pb collisions at sNN = 5.02 TeV, Xe–Xe collisions at sNN = 5.44 TeV and pp collisions at s=5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size 〈dNch/dη〉|η|&lt;0.51/3, using charged particles with transverse momentum (pT) and pseudorapidity (η), in the range 0.2&lt;3.0 GeV/c and |η|&lt;0.8, respectively. In Pb–Pb and Xe–Xe collisions, positive skewness is observed in the fluctuations of 〈pT〉 for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of 〈pT〉 fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb–Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb–Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    K *(892)± resonance production in Pb-Pb collisions at √sNN=5.02 TeV

    Get PDF
    The production of K∗(892)± meson resonance is measured at midrapidity (|y|&lt;0.5) in Pb-Pb collisions at sNN=5.02 TeV using the ALICE detector at the CERN Large Hadron Collider. The resonance is reconstructed via its hadronic decay channel K∗(892)±→KS0π±. The transverse momentum distributions are obtained for various centrality intervals in the pT range of 0.4-16 GeV/c. Measurements of integrated yields, mean transverse momenta, and particle yield ratios are reported and found to be consistent with previous ALICE measurements for K∗(892)0 within uncertainties. The pT-integrated yield ratio 2K∗(892)±/(K++K-) in central Pb-Pb collisions shows a significant suppression at a level of 9.3σ relative to pp collisions. Thermal model calculations result in an overprediction of the particle yield ratio. Although both hadron resonance gas in partial chemical equilibrium (HRG-PCE) and music + smash simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas music + smash simulations tend to overpredict the particle yield ratio. These observations, along with the kinetic freeze-out temperatures extracted from the yields measured for light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which decreases with increasing collision centrality percentile. The pT-differential yield ratios 2K∗(892)±/(K++K-) and 2K∗(892)±/(π++π-) are presented and compared with measurements in pp collisions at s=5.02 TeV. Both particle ratios are found to be suppressed by up to a factor of five at pT&lt;2.0 GeV/c in central Pb-Pb collisions and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor (RAA) shows a smooth evolution with centrality and is found to be below unity at pT&gt;8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium

    Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s=13 TeV and in p-Pb collisions at √sNN=5.02 TeV

    Get PDF
    Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| &lt; 0.9 and the transverse-momentum interval 1 &lt; pT&lt; 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 &lt; |∆η| &lt; 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events

    Search for jet quenching effects in high-multiplicity pp collisions at √s=13 TeV via di-jet acoplanarity

    Get PDF
    The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at s = 13 TeV, using the semi-inclusive azimuthal-difference distribution ∆φ of charged-particle jets recoiling from a high transverse momentum (high-pT,trig) trigger hadron. Jet quenching may broaden the ∆φ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a pT,trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity

    Pseudorapidity dependence of anisotropic flow and its decorrelations using long-range multiparticle correlations in Pb-Pb and Xe-Xe collisions

    Get PDF
    The pseudorapidity dependence of elliptic (v2), triangular (v3), and quadrangular (v4) flow coefficients of charged particles measured in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of sNN=5.02TeV and in Xe–Xe collisions at sNN=5.44TeV with ALICE at the LHC are presented. The measurements are performed in the pseudorapidity range −3.5&lt;η&lt;5 for various centrality intervals using two- and multi-particle cumulants with the subevent method. The flow probability density function (p.d.f.) is studied with the ratio of flow coefficient v2 calculated with four- and two-particle cumulant, and suggests that the variance of flow p.d.f. is independent of pseudorapidity. The decorrelation of the flow vector in the longitudinal direction is probed using two-particle correlations. The results measured with respect to different reference regions in pseudorapidity exhibit differences, argued to be a result of saturating decorrelation effect above a certain pseudorapidity separation, in contrast to previous publications which assign this observation to non-flow effects. The results are compared to 3+1 dimensional hydrodynamic and the AMPT transport model calculations. Neither of the models is able to simultaneously describe the pseudorapidity dependence of measurements of anisotropic flow and its fluctuations. The results presented in this work highlight shortcomings in our current understanding of initial conditions and subsequent system expansion in the longitudinal direction. Therefore, they provide input for its improvement
    corecore