547 research outputs found

    Ranibizumab for idiopathic epiretinal membranes: A retrospective case series

    Get PDF
    AbstractPurposeTo study the effect of intravitreal ranibizumab on idiopathic epiretinal membranes (ERMs).MethodsA retrospective cohort study on a consecutive series of ranibizumab intravitreal injections for epiretinal membranes was performed. Four cases were identified by reviewing a claims database linked to electronic medical records. All patients received a total of three 0.05mg/0.05ml ranibizumab intravitreal injections at a monthly interval. The primary outcome measure was the final best-corrected visual acuity (BCVA) at the end of the injection series, and the final central macular thickness (CMT).ResultsAll four patients completed 3months follow-up after the last ranibizumab injection. The mean baseline CMT was 509microns (SD=111). A trend was noticed for reduction in CMT (Δ=41microns) P=0.08. Three patients improved by one line in their BCVA. The remaining patient maintained the same BCVA. No complications were noted.ConclusionIn this study, intravitreal injection of ranibizumab marginally reduced retinal thickness in four patients with minimal improvement in visual acuity. No safety concerns were noticed. Further basic science and clinical studies may be warranted to assess the role of vascular endothelial growth factor and the effect of ranibizumab on idiopathic epiretinal membranes

    Theoretical investigation of a genetic switch for metabolic adaptation

    Get PDF
    Membrane transporters carry key metabolites across the cell membrane and, from a resource standpoint, are hypothesized to be produced when necessary. The expression of membrane transporters in metabolic pathways is often upregulated by the transporter substrate. In E. coli, such systems include for example the lacY, araFGH, and xylFGH genes, which encode for lactose, arabinose, and xylose transporters, respectively. As a case study of a minimal system, we build a generalizable physical model of the xapABR genetic circuit, which features a regulatory feedback loop via membrane transport (positive feedback) and enzymatic degradation (negative feedback) of an inducer. Dynamical systems analysis and stochastic simulations show that the membrane transport makes the model system bistable in certain parameter regimes. Thus, it serves as a genetic “on-off” switch, enabling the cell to only produce a set of metabolic enzymes when the corresponding metabolite is present in large amounts. We find that the negative feedback from the degradation enzyme does not significantly disturb the positive feedback from the membrane transporter. We investigate hysteresis in the switching and discuss the role of cooperativity and multiple binding sites in the model circuit. Fundamentally, this work explores how a stable genetic switch for a set of enzymes is obtained from transcriptional auto-activation of a membrane transporter through its substrate

    Fundamental limits on the rate of bacterial growth

    Get PDF
    Recent years have seen an experimental deluge interrogating the relationship between bacterial growth rate, cell size, and protein content, quantifying the abundance of proteins across growth conditions with unprecedented resolution. However, we still lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we seek to quantitatively understand this relationship across a collection of Escherichia coli proteomic data covering ≈ 4000 proteins and 36 growth rates. We estimate the basic requirements for steady-state growth by considering key processes in nutrient transport, cell envelope biogenesis, energy generation, and the central dogma. From these estimates, ribosome biogenesis emerges as a primary determinant of growth rate. We expand on this assessment by exploring a model of proteomic regulation as a function of the nutrient supply, revealing a mechanism that ties cell size and growth rate to ribosomal content

    Fundamental limits on the rate of bacterial growth

    Get PDF
    Recent years have seen an experimental deluge interrogating the relationship between bacterial growth rate, cell size, and protein content, quantifying the abundance of proteins across growth conditions with unprecedented resolution. However, we still lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we seek to quantitatively understand this relationship across a collection of Escherichia coli proteomic data covering ≈ 4000 proteins and 36 growth rates. We estimate the basic requirements for steady-state growth by considering key processes in nutrient transport, cell envelope biogenesis, energy generation, and the central dogma. From these estimates, ribosome biogenesis emerges as a primary determinant of growth rate. We expand on this assessment by exploring a model of proteomic regulation as a function of the nutrient supply, revealing a mechanism that ties cell size and growth rate to ribosomal content

    Microtesla MRI of the human brain combined with MEG

    Full text link
    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method - SQUID-based microtesla MRI - can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment - low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM

    FUNCTIONAL MR OF BRAIN ACTIVITY AND PERFUSION IN PATIENTS WITH CHRONIC CORTICAL STROKE

    Get PDF
    PURPOSE: (1) To determine whether functional MR can reliably map functional deficits in patients with stroke in the primary visual cortex; (2) to determine whether functional MR can reliably map perfusion deficits; and (3) to determine whether functional MR can give any additional diagnostic information beyond conventional MR. METHODS: Seven patients who had had a stroke in their primary visual system were examined using two functional MR techniques: (1) dynamic susceptibility contrast imaging, and (2) cortical activation mapping during full-field visual stimulation. Maps of relative cerebral blood volume and activation were created and compared with visual field examinations and conventional T2-weighted images on a quadrant-by-quadrant basis in five of these patients. RESULTS: Visual field mapping matched with both T2-weighted conventional images and activation mapping of 16 of 18 quadrants. In two quadrants, the activation maps detected abnormalities that were present on the visual field examination but not present on the T2-weighted images nor on the relative cerebral blood volume maps, which may indicate abnormal function without frank infarction. In addition, the activation maps demonstrated decreased activation in extrastriate cortex and had normal T2 signal and relative cerebral blood volume but was adjacent to infarcted primary cortex, mapping in vivo how stroke in one location can affect the function of distant tissue. CONCLUSION: Functional MR techniques can accurately map functional and perfusion deficits and thereby provide additional clinically useful information. Additional studies will be needed to determine the prognostic utility of functional MR in stroke patients

    Functional Magnetic Resonance Imaging in Conscious Animals: A New Tool in Behavioural Neuroscience Research

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a unique window to the brain, enabling scientists to follow changes in brain activity in response to hormones, ageing, environment, drugs of abuse and other stimuli. In this review, we present a general background to fMRI and the different imaging modalities that can be used in fMRI studies. Included are examples of the application of fMRI in behavioural neuroscience research, along with discussion of the advantages and disadvantages of this technology
    corecore