54 research outputs found

    Renalguard, hemofiltration and hydration in prevention of contrast induced nephropathy in patients with severe chronic kidney disease undergoing percutaneous vascular interventions

    Get PDF
    Contrast-induced nephropathy (CIN) is a frequent complication of percutaneous coronary and peripheral artery interventions and is associated with significant in-hospital and long-term morbidity and mortality. We aim to compare the impact on major events of RenalGuard system(RG), continuous veno-venous Hemofiltration (CVVH) and hydration (Hy) with sodium bicarbonate plus N-acetylcysteine in patients with severe renal failure

    Altered synaptic plasticity and behavioral abnormalities in CNGA3-deficient mice

    Get PDF
    The role of the cyclic nucleotide-gated (CNG) channel CNGA3 is well established in cone photoreceptors and guanylyl cyclase-D-expressing olfactory neurons. To assess a potential function of CNGA3 in the mouse amygdala and hippocampus, we examined synaptic plasticity and performed a comparative analysis of spatial learning, fear conditioning and step-down avoidance in wild-type mice and CNGA3 null mutants (CNGA3(-/-) ). CNGA3(-/-) mice showed normal basal synaptic transmission in the amygdala and the hippocampus. However, cornu Ammonis (CA1) hippocampal long-term potentiation (LTP) induced by a strong tetanus was significantly enhanced in CNGA3(-/-) mice as compared with their wild-type littermates. Unlike in the hippocampus, LTP was not significantly altered in the amygdala of CNGA3(-/-) mice. Enhanced hippocampal LTP did not coincide with changes in hippocampus-dependent learning, as both wild-type and mutant mice showed a similar performance in water maze tasks and contextual fear conditioning, except for a trend toward higher step-down latencies in a passive avoidance task. In contrast, CNGA3(-/-) mice showed markedly reduced freezing to the conditioned tone in the amygdala-dependent cued fear conditioning task. In conclusion, our study adds a new entry on the list of physiological functions of the CNGA3 channel. Despite the dissociation between physiological and behavioral parameters, our data describe a so far unrecognized role of CNGA3 in modulation of hippocampal plasticity and amygdala-dependent fear memory

    AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    Get PDF
    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types

    Peripherin-2 and Rom-1 have opposing effects on rod outer segment targeting of retinitis pigmentosa-linked peripherin-2 mutants

    Get PDF
    Mutations in the photoreceptor outer segment (OS) specific peripherin-2 lead to autosomal dominant retinitis pigmentosa (adRP). By contrast, mutations in the peripherin-2 homolog Rom-1 cause digenic RP in combination with certain heterozygous mutations in peripherin-2. The mechanisms underlying the differential role of peripherin-2 and Rom-1 in RP pathophysiology remained elusive so far. Here, focusing on two adRP-linked peripherin-2 mutants, P210L and C214S, we analyzed the binding characteristics, protein assembly, and rod OS targeting of wild type (per(WT)), mutant peripherin-2 (per(MT)), or Rom-1 complexes, which can be formed in patients heterozygous for peripherin-2 mutations. Both mutants are misfolded and lead to decreased binding to per(WT) and Rom-1. Furthermore, both mutants are preferentially forming non-covalent per(MT)-per(MT), per(WT)-per(MT), and Rom-1-per(MT) dimers. However, only per(WT)-per(MT), but not per(MT)-per(MT) or Rom-1-per(MT) complexes could be targeted to murine rod OS. Our study provides first evidence that non-covalent per(WT)-per(MT) dimers can be targeted to rod OS. Finally, our study unravels unexpected opposing roles of per(WT) and Rom-1 in rod OS targeting of adRP-linked peripherin-2 mutants and suggests a new treatment strategy for the affected individuals

    Access to finance: an empirical analysis

    Get PDF
    YesFinancial access is gradually being recognised as an important input to economic development. Using World Bank (2007) database, this study measures the extent of financial access in developed and developing countries. Further, it develops a new Socio-Economic Development Index, which incorporates financial access. It then compares socio-economic development of various countries as shown by Human Development Index (HDI) alone and by the new index incorporating financial access. The results of the study show that Spain ranks highest in terms of financial access followed by Belgium, Malta and South Korea. In addition, the ranking of countries in terms of HDI changes if financial access is taken into accoun

    Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease-related brain lesions such as white matter lesions and lacunes are common findings of magnetic resonance imaging in the elderly. These lesions are thought to be major contributors to disability in old age, and risk factors that include age and hypertension have been established. The radiological, histopathologic and clinical phenotypes of age-related cerebral small vessel disease remarkably resemble autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, which is caused by mutations in NOTCH3. We hypothesized that genetic variations in NOTCH3 also play a role in age-related cerebral small vessel disease. We directly sequenced all 33 exons, the promoter and 3′-untranslated region of NOTCH3 in 195 participants with either coalescent white matter lesions or lacunes and compared the results to 82 randomly selected participants with no focal changes on magnetic resonance images in the Austrian Stroke Prevention Study. We detected nine common and 33 rare single nucleotide polymorphisms, of which 20 were novel. All common single nucleotide polymorphisms were genotyped in the entire cohort (n = 888), and four of them, rs1043994, rs10404382, rs10423702 and rs1043997, were associated significantly with both the presence and progression of white matter lesions. The association was confined to hypertensives, a result which we replicated in the Cohorts for Heart and Ageing Research in Genomic Epidemiology Consortium on an independent sample of 4773 stroke-free hypertensive elderly individuals of European descent (P = 0.04). The 33 rare single nucleotide polymorphisms were scattered over the NOTCH3 gene with three being located in the promoter region, 24 in exons (18 non-synonymous), three in introns and three in the 3′-untranslated region. None of the single nucleotide polymorphisms affected a cysteine residue. Sorting Intolerant From Tolerant, PolyPhen2 analyses and protein structure simulation consistently predicted six of the non-synonymous single nucleotide polymorphisms (H170R, P496L, V1183M, L1518M, D1823N and V1952M) to be functional, with four being exclusively or mainly detected in subjects with severe white matter lesions. In four individuals with rare non-synonymous single nucleotide polymorphisms, we noted anterior temporal lobe hyperintensity, hyperintensity in the external capsule, lacunar infarcts or subcortical lacunar lesions. None of the observed abnormalities were specific to cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. This is the first comprehensive study investigating (i) the frequency of NOTCH3 variations in community-dwelling elderly and (ii) their effect on cerebral small vessel disease related magnetic resonance imaging phenotypes. We show that the NOTCH3 gene is highly variable with both common and rare single nucleotide polymorphisms spreading across the gene, and that common variants at the NOTCH3 gene increase the risk of age-related white matter lesions in hypertensives. Additional investigations are required to explore the biological mechanisms underlying the observed association

    The Concise Guide to PHARMACOLOGY 2023/24: Ion channels.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview

    Get PDF
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified ‘Other protein targets’ which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Get PDF
    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3(-/-)) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythmand for the determination of behavior. Contrary to previous suggestions we find that HCN3(-/-) mice show normal visual, photic, and non-photic circadian function. In addition, HCN3(-/-) mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure

    The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
    corecore