819 research outputs found

    Time variations in the deep underground muon flux measured by MACRO

    Full text link
    More than 30 million of high-energy muons collected with the MACRO detector at the underground Gran Sasso Laboratory have been used to search for flux variations of different natures. Two kinds of studies were carried out: search for periodic variations and for the occurrence of clusters of events. Different analysis methods, including Lomb-Scargle spectral analysis and Scan Test statistics have been applied to the data.Comment: 6 pages, 4 EPS figures. Talk given at the 29th ICRC, Pune, India, 3-10 August 200

    Sensitivity to point-like sources of the ALTO atmospheric particle detector array, designed for 200GeV\rm 200\,GeV--50TeV\rm 50\,TeV γ\gamma-ray astronomy

    Full text link
    In the context of atmospheric shower arrays designed for γ\gamma-ray astronomy and in the context of the ALTO project, we present: a study of the impact of heavier nuclei in the cosmic-ray background on the estimated γ\gamma-ray detection performance on the basis of dedicated Monte Carlo simulations, a method to calculate the sensitivity to a point-like source, and finally the required observation times to reach a firm detection on a list of known point-like sources.Comment: 16 pages, 7 figures, accepted for publication in JHEAP (Journal of High-Energy Astrophysics

    HESS-II reconstruction strategy and performance in the low-energy (20-150 GeV) domain

    Get PDF
    International audienceIn mid-2009 a notable upgrade of the H.E.S.S. telescope system will take place: a new telescope with a 600 m2 mirror area and very-high-resolution camera (0.07°) will be positioned at the centre of the present configuration, with the aim of lowering the threshold and enhance its sensitivity in the 100 GeV to several TeV energy range. HESS-II will permit the investigation of the lower energy gamma-ray spectra in various cosmic accelerators, giving information on the origin of the gamma-rays observed, and will detect AGNs with a redshift greater than 0.2 (being less affected by absorption by Extragalactic Background Light-EBL-in this energy range) and will search for new classes of very high energy gamma-ray emitters (pulsars, microquasars, GRB, and dark matter candidates)

    Search for a Lorentz invariance violation contribution in atmospheric neutrino oscillations using MACRO data

    Full text link
    Neutrino-induced upward-going muons in MACRO have been analysed in terms of relativity principles violating effects, keeping standard mass-induced atmospheric neutrino oscillations as the dominant source of nu_mu -> nu_tau transitions. The data disfavor these exotic possibilities even at a sub-dominant level, and stringent 90% C.L. limits are placed on the Lorentz invariance violation parameter |Delta v| < 6 * 10^(-24) at sin2theta_v = 0 and |Delta v| < 2.5--5 * 10^(-26) at sin2theta_v = +/-1. These limits can also be re-interpreted as upper bounds on the parameters describing violation of the Equivalence Principle.Comment: 8 pages, 2 figures, submitted to Physics Letters

    Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector

    Get PDF
    Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by ¿µ chargedcurrent interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within ±500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,¿ emitted as neutrinos of all flavours and on the ratio f¿ = Etot,¿/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,¿ < 4.0 × 1053 erg and f¿ < 0.15 (respectively, Etot,¿ < 3.2 × 1053 erg and f¿ < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been testedPeer ReviewedA. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, M. Bissinger, J. Boumaaza, M. Bouta, M.C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, L. Caramete, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, T.N. Chau, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J.A.B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A.S.M. Cruz, A.F. Díaz, B. De Martino, C. Distefano, I. Di Palma, A. Domi, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, S. Hallmann, H. van Haren, A.J. Heijboer, Y. Hello, J.J. Hernández-Rey, J. Hößl, J. Hofestädt, F. Huang, G. Illuminati, C.W. James, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, D. Lopez-Coto, S. Loucatos, L. Maderer, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J.A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, L. Nauta, S. Navas, E. Nezri, B. Ó Fearraigh, A. Păun, G.E. Păvălaş, M. Perrin-Terrin, V. Pestel, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, S. Reck, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D.F.E. Samtleben, M. Sanguineti, P. Sapienza, J. Schnabel, J. Schumann, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, S.J. Tingay, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J.D. Zornoza, J. ZúñigaPostprint (published version

    Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES

    Get PDF
    [EN] Interactions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce gamma-ray flux from the Galactic Ridge. If the gamma-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the gamma-ray flux is expected from the same sky region. Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region |l| < 30 degrees, |b| < 2 degrees. The expected background in the search region is estimated using an off-zone region with similar sky coverage. Neutrino signal originating from a power-law spectrum with spectral index ranging from Gamma nu = 1to 4is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge. The energy distributions in the signal region are inconsistent with the background expectation at similar to 96% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a spectral index 2.45(-0.34)(+0.22) and a flux normalization dN nu/dE nu= 4.0(-2.0)(+2.7) x 10(-16) GeV-1 cm(-2) s(-1) sr(-1) at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed gamma-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range.The authors acknowledge the financial support of the funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Labex UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Region Alsace (contrat CPER), Region Provence-Alpes-Cpte d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fuer Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 754496, Italy; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Grants PID2021-124591NB-C41,-C42,-C43 funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by "ERDF A way of making Europe", by the "European Union" or by the "European Union NextGenerationEU/PRTR", Programa de Planes Complementarios I+D+I (refs. ASFAE/2022/023, ASFAE/2022/014), Programa Prometeo (PROMETEO/2020/019) and GenT (refs. CIDE-GENT/2018/034,/2019/043,/2020/049./2021/23) of the Generalitat Valenciana, Junta de Andalucia (ref. P18-FR-5057), EU: MSC program (ref. 101025085), Programa Maria Zambrano (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU), Spain; Ministry of Higher Education, Scientific Research and Training, Morocco, and the Arab Fund for Economic and Social Development, Kuwait. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and the CC-IN2P3 for the computing facilities.Albert, A.; Alves, S.; Andre, M.; Ardid, M.; Ardid, S.; Aubert, J.; Aublin, J.... (2023). Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES. Physics Letters B. 841. https://doi.org/10.1016/j.physletb.2023.13795184
    corecore