5,268 research outputs found
First results from TOO observations of the Aql X-1 field with INTEGRAL
We present results of observations of the Aql X-1 field performed in
March-April 2003 with the INTEGRAL observatory. This TOO (Target Of
Opportunity) INTEGRAL observations was initiated upon receiving an indication
from the ASM/RXTE that the source started an outburst. Thirteen X-ray sources
were detected by the INTEGRAL imagers, JEM-X and IBIS, during these
observations. We present a preliminary spectral and timing analysis for several
bright sources in the field, Aql X-1, X1901+03, 4U1907+097, XTE J1908+094 and
X1908+075. We also detected two X-ray bursts from Aql X-1 near the end of the
general outburst episode.Comment: 5 pages, 7 figures, accepted for publication in the A&
On the high coherence of kilo-Hz Quasi-Periodic Oscillations
We have carried out a systematic study of the properties of the kilo-Hertz
quasi-periodic oscillations (QPO) observed in the X-ray emission of the neutron
star low-mass X-ray binary 4U1608-52, using archival data obtained with the
Rossi X-ray Timing Explorer. We have investigated the quality factor, Q, of the
oscillations (defined as the ratio of the frequency of the QPO peak to its full
width at half maximum). In order to minimise the effect of long-term frequency
drifts, power spectra were computed over the shortest times permitted by the
data statistics. We show that the high Q of ~200 reported by Berger et al.
(1996) for the lower frequency kilo-Hz QPO in one of their observations is by
no means exceptional, as we observe a mean Q value in excess of 150 in 14 out
of the 21 observations analysed and Q can remain above 200 for thousands of
seconds. The frequency of the QPO varies over the wide range 560--890 Hz and we
find a systematic trend for the coherence time of the QPO, estimated as tau=Q
/(pi nu), to increase with the frequency, up to a maximum level at ~ 800 Hz,
beyond which it appears to decrease, at frequencies where the QPO weakens.
There is a more complex relationship between tau and the QPO root mean squared
amplitude (RMS), in which positive and negative correlations can be found. A
higher-frequency QPO, revealed by correcting for the frequency drift of the
560-890 Hz one, has a much lower Q (~10) which does not follow the same
pattern. We discuss these results in the framework of competing QPO models and
show that those involving clumps orbiting within or above the accretion disk
are ruled out.Comment: Accepted for publication in MNRAS, 8 pages, 6 figures, 3 Table
Monte-Carlo simulations of the background of the coded-mask camera for X- and Gamma-rays on-board the Chinese-French GRB mission SVOM
For several decades now, wide-field coded mask cameras have been used with
success to localise Gamma-ray bursts (GRBs). In these instruments, the event
count rate is dominated by the photon background due to their large field of
view and large effective area. It is therefore essential to estimate the
instrument background expected in orbit during the early phases of the
instrument design in order to optimise the scientific performances of the
mission. We present here a detailed study of the instrument background and
sensitivity of the coded-mask camera for X- and Gamma-rays (CXG) to be used in
the detection and localisation of high-redshift GRBs on-board the international
GRB mission SVOM. To compute the background spectrum, a Monte-Carlo approach
was used to simulate the primary and secondary interactions between particles
from the main components of the space environment that SVOM will encounter
along its Low Earth Orbit (LEO) (with an altitude of 600 km and an inclination
of ~ 30 deg) and the body of the CXG. We consider the detailed mass model of
the CXG in its latest design. According to our results, i) the design of the
passive shield of the camera ensures that in the 4-50 keV imaging band the
cosmic X-Gamma-ray background is dominant whilst the internal background should
start to become dominant above 70-90 keV; ii) the current camera design ensures
that the CXG camera will be more sensitive to high-redshift GRBs than the Swift
Burst Alert Telescope thanks to a low-energy threshold of 4 keV.Comment: 16 pages, 10 figures (1 colour), accepted for publication in Nuclear
Instruments and Methods in Physics Research: Section
Further Observations of the Intermediate Mass Black Hole Candidate ESO 243-49 HLX-1
The brightest Ultra-Luminous X-ray source HLX-1 in the galaxy ESO 243-49
currently provides strong evidence for the existence of intermediate mass black
holes. Here we present the latest multi-wavelength results on this intriguing
source in X-ray, UV and radio bands. We have refined the X-ray position to
sub-arcsecond accuracy. We also report the detection of UV emission that could
indicate ongoing star formation in the region around HLX-1. The lack of
detectable radio emission at the X-ray position strengthens the argument
against a background AGN.Comment: 4 pages, 2 figures. Accepted 11th of Feb 2010. Contributed talk to
appear in Proceedings of "X-ray Astronomy 2009: Present Status,
Multi-Wavelength Approach and Future Perspectives", Bologna, Italy, September
7-11, 2009, AIP, eds. A. Comastri, M. Cappi, and L. Angelin
Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters
Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results
Complexity analysis of Klein-Gordon single-particle systems
The Fisher-Shannon complexity is used to quantitatively estimate the
contribution of relativistic effects to on the internal disorder of
Klein-Gordon single-particle Coulomb systems which is manifest in the rich
variety of three-dimensional geometries of its corresponding quantum-mechanical
probability density. It is observed that, contrary to the non-relativistic
case, the Fisher-Shannon complexity of these relativistic systems does depend
on the potential strength (nuclear charge). This is numerically illustrated for
pionic atoms. Moreover, its variation with the quantum numbers (n, l, m) is
analysed in various ground and excited states. It is found that the
relativistic effects enhance when n and/or l are decreasing.Comment: 4 pages, 3 figures, Accepted in EPL (Europhysics Letters
ASCA Observations of GX 354-0 and KS 1731-260
We report on ASCA observations of the low mass X-ray binaries GX 354-0 and KS
1731-260. The spectrum of GX 354-0 is best described as a power-law or a
Comptonized spectrum with tau ~ 5 and kT ~ 8 keV and a residual at ~6.5 keV.
The residual may be a disk reflection or a Compton broadened Gaussian line from
the hot inner ADAF-like coronal region. The absorption column density to the
source is 2.9e22 cm^-2. No soft thermal component was detected. The spectrum
from KS 1731-260 is softer and it is best fit with a two component model with a
column density of 1.1e22 cm^-2. The likely interpretation is emission from a
Comptonizing cloud with an optical depth tau>12 and either a neutron star or a
disk blackbody emission. We discuss the likely location of the Comptonizing
cloud for both sources within the context of several proposed emission models.Comment: Accepted for publication in the Astrophysical Journa
RXTE Studies of X-ray Spectral Variations with Accretion Rate in 4U 1915-05
We present the results of detailed spectral studies of the ultra-compact low
mass X-ray binary (LMXB) 4U 1915-05 carried out with the Rossi X-ray Timing
Explorer (RXTE) during 1996. 4U 1915-05 is an X-ray burster (XRB) known to
exhibit a ~199-day modulation in its 2--12 keV flux. Observations were
performed with the PCA and HEXTE instruments on RXTE at roughly one-month
intervals to sample this long-term period and study accretion rate-related
spectral changes. We obtain good fits with a model consisting of a blackbody
and an exponentially cut-off power law. The spectral parameters are strongly
correlated with both the broad-band (2--50 keV) luminosity and the position in
the color-color diagram, with the source moving from a low hard state to a high
soft state as the accretion rate increases. The blackbody component appears to
drive the spectral evolution. Our results are consistent with a geometry in
which the soft component arises from an optically thick boundary layer and the
hard component from an extended Comptonizing corona. Comparing our results with
those of a similar study of the brighter source 4U 1820-30 (Bloser et al.
2000), we find that the two ultra-compact LMXBs occupy similar spectral states
even though the transitions occur at very different total luminosities.Comment: 27 pages LaTeX, 8 figures, accepted to the Astrophysical Journa
Optical variability of the accretion disk around the intermediate mass black hole ESO 243-49 HLX-1 during the 2012 outburst
We present dedicated quasi-simultaneous X-ray (Swift) and optical (Very Large
Telescope (VLT), V- and R-band) observations of the intermediate mass black
hole candidate ESO 243-49 HLX-1 before and during the 2012 outburst. We show
that the V-band magnitudes vary with time, thus proving that a portion of the
observed emission originates in the accretion disk. Using the first quiescent
optical observations of HLX-1, we show that the stellar population surrounding
HLX-1 is fainter than V~25.1 and R~24.2. We show that the optical emission may
increase before the X-ray emission consistent with the scenario proposed by
Lasota et al. (2011) in which the regular outbursts could be related to the
passage at periastron of a star circling the intermediate mass black hole in an
eccentric orbit, which triggers mass transfer into a quasi-permanent accretion
disk around the black hole. Further, if there is indeed a delay in the X-ray
emission we estimate the mass-transfer delivery radius to be ~1e11 cm.Comment: 9 pages, 2 figures, accepted for publication in ApJ
- …