567 research outputs found

    Thrombosis with Behçet’s disease should be evaluated different conditions

    Get PDF
    No Abstract

    Fluid flowlifting a body from a solid surface

    Get PDF
    If a body is at rest on horizontal ground and a sudden horizontal flow of fluid is applied, the body either remains on the ground (rocking, rolling, sliding or spinning) or is lifted off impulsively. This lift-off is followed by a return to the ground or by a fly-away in the sense of continued departure from the ground. Related phenomena arise in the lift-off of an air vehicle from, effectively, moving ground. The present investigation seeks fairly precise mechanistic conditions under which lift-off and subsequent return or fly-away occur for a thin body or more generally for any thin gap of fluid between a body and the ground. Nonlinear fluid–solid interaction takes place in which the motion of the body and the surrounding fluid affect each other. Small-time analysis on lift-off and a numerical study are presented, followed by large-time analysis showing a critical flow speed for fly-away for any shape of the body. The changes in ground effect, from being dominant during lift-off to diminishing in fly-away, are explored together with relevant applications

    The Fate of Foodborne Pathogens in Manure Treated Soil

    Get PDF
    Publication history: Accepted - 22 November 2021; Published online - 10 December 2021.The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables postharvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.This work was funded by the Department of Agriculture, Environment and Rural Affairs (DAERA); https://www.daera-ni.gov.uk) as part of the DAERA Postgraduate Studentship Programme and by the DAERA Evidence and Innovation project 18/1/21: Evaluating the impact of a range of organic manures applied to arable land on soil, crop and NI agriculture

    An efficient GUI-based clustering software for simulation and Bayesian cluster analysis of single-molecule localization microscopy data

    Get PDF
    Ligand binding of membrane proteins triggers many important cellular signaling events by the lateral aggregation of ligand-bound and other membrane proteins in the plane of the plasma membrane. This local clustering can lead to the co-enrichment of molecules that create an intracellular signal or bring sufficient amounts of activity together to shift an existing equilibrium towards the execution of a signaling event. In this way, clustering can serve as a cellular switch. The underlying uneven distribution and local enrichment of the signaling cluster’s constituting membrane proteins can be used as a functional readout. This information is obtained by combining single-molecule fluorescence microscopy with cluster algorithms that can reliably and reproducibly distinguish clusters from fluctuations in the background noise to generate quantitative data on this complex process. Cluster analysis of single-molecule fluorescence microscopy data has emerged as a proliferative field, and several algorithms and software solutions have been put forward. However, in most cases, such cluster algorithms require multiple analysis parameters to be defined by the user, which may lead to biased results. Furthermore, most cluster algorithms neglect the individual localization precision connected to every localized molecule, leading to imprecise results. Bayesian cluster analysis has been put forward to overcome these problems, but so far, it has entailed high computational cost, increasing runtime drastically. Finally, most software is challenging to use as they require advanced technical knowledge to operate. Here we combined three advanced cluster algorithms with the Bayesian approach and parallelization in a user-friendly GUI and achieved up to an order of magnitude faster processing than for previous approaches. Our work will simplify access to a well-controlled analysis of clustering data generated by SMLM and significantly accelerate data processing. The inclusion of a simulation mode aids in the design of well-controlled experimental assays
    corecore