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Ligand binding of membrane proteins triggers many important cellular signaling events by
the lateral aggregation of ligand-bound and other membrane proteins in the plane of the
plasma membrane. This local clustering can lead to the co-enrichment of molecules that
create an intracellular signal or bring sufficient amounts of activity together to shift an
existing equilibrium towards the execution of a signaling event. In this way, clustering can
serve as a cellular switch. The underlying uneven distribution and local enrichment of the
signaling cluster’s constituting membrane proteins can be used as a functional readout.
This information is obtained by combining single-molecule fluorescence microscopy with
cluster algorithms that can reliably and reproducibly distinguish clusters from fluctuations in
the background noise to generate quantitative data on this complex process. Cluster
analysis of single-molecule fluorescence microscopy data has emerged as a proliferative
field, and several algorithms and software solutions have been put forward. However, in
most cases, such cluster algorithms require multiple analysis parameters to be defined by
the user, which may lead to biased results. Furthermore, most cluster algorithms neglect
the individual localization precision connected to every localized molecule, leading to
imprecise results. Bayesian cluster analysis has been put forward to overcome these
problems, but so far, it has entailed high computational cost, increasing runtime drastically.
Finally, most software is challenging to use as they require advanced technical knowledge
to operate. Here we combined three advanced cluster algorithms with the Bayesian
approach and parallelization in a user-friendly GUI and achieved up to an order of
magnitude faster processing than for previous approaches. Our work will simplify
access to a well-controlled analysis of clustering data generated by SMLM and
significantly accelerate data processing. The inclusion of a simulation mode aids in the
design of well-controlled experimental assays.
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1 INTRODUCTION

Cells rely on transmembrane signaling to interact with the outside
world. It is essential that cells can specifically and decisively be put
into action in response to signals in a noisy and complex
environment (Pierce et al., 2002). To do so, mechanisms have
evolved that allow the triggering of an all-or-none, lasting
response if required. This often involves a threshold number
of ligand-activated membrane molecules that recruit auxiliary
molecules to form a larger assembly that, upon reaching
threshold size, will switch the cell into a different state. These
signaling assemblies appear as clusters of membrane proteins in
the plasma membrane of cells. However, the clusters may
represent only a small subfraction of the membrane protein in
question in an otherwise randomly distributed larger population
(Janeway et al., 2001; Schultz and Schaefer, 2008). Cluster
algorithms can detect such active signaling clusters in a
randomly distributed background if the exact spatial
distribution of membrane proteins is known (Williamson
et al., 2011; Khater et al., 2020). Cartography of membrane
protein distribution at the nanoscale has been made possible
by super-resolution microscopy approaches based on the
sequential localization of single fluorescence-labeled proteins
[Single-Molecule Localisation Microscopy (SMLM), Betzig
et al., 2006; Rust et al., 2006; Heilemann et al., 2008].
Clustering has since developed into an essential readout for
membrane protein function in many cellular processes. Over
the last years, several cluster algorithms have been adapted
specifically for the analysis of single-molecule fluorescence
data of membrane proteins (Owen et al., 2010; Annibale et al.,
2011a,b; Nicovich et al., 2017; Baumgart et al., 2019; Arnold et al.,
2020; Pike et al., 2020). SMLM of membrane proteins and their
cluster analysis still requires a high level of experimental and
analytical expertise. To make cluster analysis more accessible, we
here combined a selection of the latest clustering approaches with
several useful computational features to speed up and streamline
cluster analysis in a single, user-friendly software. Specifically, we
implemented Bayesian Cluster Analysis, Ripley’s-K-based
clustering, DBSCAN (Rubin-Delanchy et al., 2015; Griffié
et al., 2016), and ToMATo (Pike et al., 2020) for cluster
analysis. We then compared the performance of these
approaches on simulated and newly generated experimental
data from different cellular systems. Furthermore, we
implemented a pipeline for parallelized computing of cluster
analysis and, as a result, could analyze even large datasets at a
fraction of the time required before. Our software will simplify
and accelerate cluster analysis as a readout of membrane protein
function.

2 RESULTS

2.1 Structure of the GUI
To facilitate the use of parallelized Bayesian cluster analysis for
the community, we developed an easy-to-use software called
BaClAva (Bayesian Cluster Analysis and visualization
application) with a graphical user interface (GUI, Figure 1).

This software consists of a pipeline of three modules for
simulations, clustering, and analysis that can be used
independently via the GUI. Thought experiments are an
essential tool in developing reliable experimental strategies and
are especially important for data processing-intensive assays
because they might offer crucial insights into the experimental
setup and data processing strategies. To allow for the freehand
design of ground-truth data while simulating realistic
experimental output, we included a simulation module similar
to FluoSim (Lagardère et al., 2020). This module allows the
generation of user-defined clusters of molecules combined
with a selected level of randomly placed background
molecules. The results of this ground truth are then modeled
as images resulting from an SMLM-experiment emulated based
on experimental statistics of dye blinking, camera noise, and
localization accuracy. The resulting image stack is localized using
standard algorithms and can be used as an alternative to or
alongside actual SMLM localization data in downstream
clustering analysis. If desired, the generation of emulated
microscopy images from the constructed localizations can be
omitted, as exemplified in Figure 3. This option is based on
Griffié et al. (2016).

The second module is the clustering module, which analyzes
single-molecule localization datasets in the format [X (nm), Y
(nm), STDEV (nm)]. STDEV is the localization precision as
calculated by the localization software. Once the data are loaded
into the software, the user can choose between ToMATo,
Ripley’s-K-based, or DBSCAN cluster analysis, define the
desired parameter space for Bayesian analysis and select,
whether the computation is done sequentially or in parallel.
The third and final module allows the visualization and export
of the results in a graphic or tabular form, including essential
analytical parameters such as the number of clusters, cluster area,
and cluster density.

To decrease the number of files stored on the computer disk,
we decided to store all information in a Hierarchical Data Format
(hdf5) (Figure 1). The hdf5 format enables us to store the
localization table (simulation or experimental), the Bayesian
engine scores and labels, and further information in a single
data file.

2.2 Benchmarking
First, we aimed to benchmark our cluster software on simulated
clustering data. To do so, we generated 100 simulated images of
clustered molecules, each containing ten clusters of 100
localizations. For example, see Figure 2A. These simulations
were generated in the following way: Clusters were generated
from single points ≥100 nm apart for each of which 100
localizations were generated by drawing from a normal
distribution with a standard deviation of 50 nm. The random
background was generated at a density of 111 localizations
per µm2. Thus, the proportion of unclustered localization was
designed to be 50% of all localizations (Section 4.6).

These data were then analyzed with the Bayesian model and
the three different cluster detection algorithms. Figure 2 shows
the simulated data and the corresponding clustering outputs.
Since the cluster centers were set to be at least two standard
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deviations apart from each other, the individual clusters can be
correctly identified by eye (Figure 2A) and as well with DBSCAN
(Figure 2C) and ToMATo (Figure 2D). In contrast and as shown
before (Pike et al., 2020), the approach based on Ripley’s
K-function (Figure 2B) fails to separate nearby clusters and
thus commonly misidentifies cluster number and area
(Figures 2E,F). As previously shown, this behavior is due to
the incapability of this approach to correctly take into account the
local density of the data points (Rubin-Delanchy et al., 2015;
Griffié et al., 2017). In contrast, both DBSCAN and ToMATo
could quantify both cluster number and overall cluster area quite
accurately in the majority of simulations (Figures 2E,F).

These methods in the Bayesian cluster approach rely not on a
single set of parameters but instead on a continuum of so-called
proposals, defined sets of values computed to cover an ample
parameter space to find an overall optimum of cluster
identification (Rubin-Delanchy et al., 2015; Griffié et al., 2016).
While this approach has proven to lead to superior results, it is
necessarily computationally costly. We aimed to overcome this
problem to increase processing speed and thus experimental
throughput.

In the original work (Rubin-Delanchy et al., 2015; Griffié et al.,
2016), the cluster proposals’ calculation in Bayesian analysis is

done in nested for-loops on a single CPU core. Since the
individual cluster proposals are independent of each other,
the processing could also be implemented in parallel. This
means that the program uses multiple CPU cores instead of a
single core and therefore calculates multiple proposals at the
same time. In our software, we implemented the parallelized
computing of Bayesian cluster analysis and compared the results
with the sequential computational approach.

We first used ten simulations to benchmark the clustering
methods described above in Bayesian analysis. We found
that typical runtimes for Ripley’s K-based and DBSCAN
clustering were 25.78 ± 0.86 and 28.45 ± 0.78 min,
respectively (mean ± standard deviation). The ToMATo
implementation from the RSMLM package (Pike et al., 2020)
had a runtime of 23.87 ± 0.80 min (mean ± standard deviation,
Figure 3). By parallelizing the clustering and scoring process
to multiple cores, we found the computation time to decrease
by 60% for Ripley’s K-based, 10.41 ± 0.23 min, and DBSCAN,
11.90 ± 0.27 min (Figure 3). For the ToMATo implementation,
the computational time decreased by one order of magnitude
to 3.062 ± 0.072 min. In summary, the parallelization
significantly reduced processing time for Bayesian cluster
analysis.

FIGURE 1 | Overview of the software GUI. Schematic of the three independently usable software modes and organization of the software. Simulations can be
prepared individually or as batches, and the localization results get exported as tiff or hdf5 files, depending on the simulation option. For the second module, the
simulated data is imported from the hdf5 file, or experimental datasets can be imported in the form of a text or csv file. The user can set various parameters, most notably
the cluster method, the type of computation, and additional Bayesian clustering parameters. This module’s output, namely the scores and the labels for all
proposals, is stored in the hdf5 file. In the final processing step, the original localization table and the Bayesian clustering module’s output are used to produce the best
cluster plots and the corresponding (batch) statistics. The statistics are exported as text files as well as plots.

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 7239153

Kutz et al. GUI-Based Clustering Software

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


FIGURE 2 | Comparison of cluster algorithms. (A) Example of one of 100 simulated ground truth datasets. (B,C) Cluster detection (colored) by (B) Ripley’s-K-
function-based implementation, (C) DBSCAN, and (D) ToMATo for this dataset demonstrating the respectively detected clusters. (E) Violin plots of the number of
detected clusters in 100 simulations containing 10 ground-truth clusters for each of the algorithms implemented. The mean is emphasized as a black circle. Ten clusters
were simulated, and the mean for Ripley’s-K-based clustering was 9.8 ± 2.0, for DBSCAN 9.5 ± 0.7, and 9.8 ± 0.7 for ToMATo. Note that the spread is significantly
larger for Ripley’s-K-based, DBSCAN never overcounted, and ToMATo was the most accurate overall. (F) Plot of all ground truth and recognized cluster areas. The
ground truth data’s cluster area has an average size of 0.061 ± 0.013 µm2, the Ripley’s-K-based clustering results in 0.044 ± 0.023 µm2, DBSCAN in 0.055 ±
0.017 µm2, and ToMATo clustering averages the area to 0.053 ± 0.015 µm2 (mean ± standard deviation).

FIGURE 3 | Computational costs for sequential and parallel implementations. Shown is the computational time of the Bayesian engine (in min) in sequential and
parallel mode for (A) Ripley’s-K-based clustering, (B) DBSCAN, and (C) ToMATo.
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Next, we aimed to investigate several known sources of error in
clustering single-molecule localization microscopy data. An
important source of error in the cluster analysis of SMLM
data is caused by multiple localizations of the same fluorescent
molecule generated by most SMLM approaches that necessarily
generate a cluster of localizations from every single fluorophore.
Consequently, this fact must be considered for declaring any
statement on fundamental information such as cluster size in
terms of area and number of molecules in the cluster. In the case
of PALM, algorithms have been published which aim at
correcting this artifact (Annibale et al., 2011b,a; Jensen et al.,

2021b,a). By simulating blinking SMLM data with realistic
blinking statistics for Alexa Fluor 647, we determined how
dense the underlying molecules must be for proper cluster
detection. The simulations of (d)STORM experiments were
generated in the following way: Cluster areas were generated
by randomly distributing 40 non-overlapping clusters with an
area of 0.0078 µm2 (diameter � 50 nm). Their molecular density
was increased from 0.71 ± 0.25 × 103 to 6.24 ± 0.63 × 103 μm−2,
translating to molecules per cluster ranging from 5.6 ± 1.9 up to
49.0 ± 4.9. The random background was generated at a density of
639 ± 49 molecules per µm2 for sparse clusters up to a density of

FIGURE 4 | Influence of fluorophore blinking on clustering. (A) Violin plot for the relative density of the clusters vs. the background with and without grouping
applied, (B) Violin plot of the percentage of the clustered localization with grouping, (C) Violin plot of the number of clusters per ROI with and without grouping applied, (D)
Violin plot of the areas of the clusters with and without grouping, (E) Examples for clustering of a random distribution of fluorophores and 40 clusters at a density of 1.40 ±
0.36 × 103 μm−2 (left column), 3.79 ± 0.38 × 103 μm−2 (middle column) and 6.24 ± 0.63 × 103 μm−2 (right column). Each dataset was analyzed in SMAP with
and without grouping. The cluster analysis was performed by the Bayesian engine plus ToMATo.
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346 ± 51 molecules per µm2 for dense clusters. For sparse clusters,
almost 94 and 51% of all molecules are assigned to the
background for dense clusters. The blinking parameters were
kon � 0.01 s−1 and koff � 10 s−1. The FWHM of the PSF was set to
200 nmwith an intensity of 2007. The pixel size of the camera was
set to 0.096 µm, which is identical to the pixel size of the Evolve
Delta 512 Photometrics camera on our microscope. The exposure
time was set to 10 ms, which is the exposure time we use in
experiments with Alexa Fluor 647 dyes, and as in a (d)STORM
experiment, 50,000 frames were acquired. The localization
procedure and grouping were done in SMAP (Ries, 2020). The
obtained localization table was used for the Bayesian Analysis.
The results are visualized in Figure 4.

In Figure 4A, the cluster to background density for grouped
and non-grouped data is shown. For both cases, the relative
density increases with increasing cluster density and a smaller
spread of the distributions for grouped data, whereas the non-
grouped data distributions show a broader spread, indicating the
efficiency of the grouping function in SMAP. Additionally, the
number of clusters per region of interest (ROI) is reduced by the
grouping, which removes clusters caused by single blinking
fluorophores (Figures 4C,E). The higher relative density of
fluorophores in clusters compared with background
localizations indicates that a local density threshold must be
surpassed to render the interpretation of cluster data
independent of fluorophore blinking properties. As shown in
Figure 4C, the number of clusters is constant for grouped data up
to a concentration of 2.62 ± 0.39 × 103 μm−2 localizations. For
higher concentrations, the number of clusters approaches the
ground truth of 40 clusters. Without grouping, the number of
identified clusters decreases with increasing fluorophore
concentration, reflecting a higher relative enrichment of
fluorophores inside the clusters than outside them. The improved
situation for grouped data is also visible in Figure 4B, showing that
the percentage of clustered localizations increases with increasing
fluorophore density. For the best cluster result in these simulations,
more than 30% of the localizations must occur in clusters, and a
relative density (localization density inside vs. outside of cluster)
threshold of 10must be overcome for the localizations inside clusters
versus outside.

Moreover, the cluster size (Figure 4D), meaning the area
covered by localizations in a cluster, shows the influence of
background localizations on the data distribution. Cluster area
increases in size for grouped data starting from a concentration of
1.87 ± 0.39 × 103 μm−2. For the non-grouped data, there is a
significant proportion of very small clusters at all concentrations.
This cluster population is not present for the grouped data,
indicating that these clusters emerge from multiple detections
of a single fluorophore, i.e., blinking. For a density of 2.62 ± 0.39 ×
103 μm−2 molecules and higher, a second population emerges in
the non-grouped data distributions, which corresponds to the
main population in the grouped distributions. Therefore, they can
be considered correctly identified clusters. Similarly, from 2.62 ±
0.39 × 103 μm−2 molecules onwards, the number of clusters per
ROI decreases. As demonstrated in Figure 4E, small background
clusters are removed with the grouping functionality (top row vs.
bottom row) and with increasing fluorophore density within the

clusters (from left to right). As expected, the ground truth clusters
become more apparent when the number of clustered molecules
is increased even in the non-grouped data, indicating that single
fluorophore blinking has a significantly reduced impact on
density-based cluster identification for denser clusters. We
concluded that grouping is essential in the detection of smaller
clusters.

Finally, we aimed to apply our algorithm to experimental data
from single-molecule localization experiments of intact cells. We
used standard controls in the field for non-clustered and clustered
molecules respectively at the plasma membrane. The lipid-
anchored glycosylphosphatidylinositol-coupled green
fluorescent protein GPI-GFP should be more or less
homogeneously distributed and functioned as the negative
control. The clathrin-light chain (CLC), of which dozens of
copies are incorporated into every ∼150 nm diameter clathrin-
coated pit and thus appears strongly clustered, served as the
positive control. In order to keep our results comparable, all
molecules of interest were tagged with a GFP protein, and the (d)
STORM dye Alexa Fluor 647 was bound to the GFP via anti-GFP
nanobodies in all experiments (Ries et al., 2012). From the
simulation work, we know that the cluster results for GPI-GFP
should show a wide range of cluster areas, whereas, for the CLC,
we expect to yield well-defined cluster areas. Finally, we asked
whether we could detect clustering for the transmembrane
receptor CD95, as the receptor activation via its ligand may
trigger apoptosis or tumorigenesis of cancer cells and has been
suggested to result in the formation of high order molecular
clustering (Martin-Villalba et al., 2013). CD95 was likewise
labeled via GFP and AF647 nanobodies.

The reconstructed images in Figure 5 of these three proteins
show differences in the spatial distribution of the localizations.
For GPI-GFP imaged in CV-1 cells in Figure 5A, the localizations
are evenly distributed, and the cluster maps for the zoom-ins
show small clusters, which are probably due to the blinking of the
Alexa Fluor 647 dye. In contrast, in Figure 5B, the CLC imaged in
HeLa cells show well-defined clusters in agreement with clathrin-
coated pit size (Supplementary Figure S1) with little background
localizations, as seen in the cluster maps of the zoom-ins. The
CD95 receptor in T98G glioblastoma cells presents a localization
distribution with smaller clusters and more background
localizations than CLC. The cumulative distribution of the
cluster areas of several cells for each condition in Figure 5D
reveals that GPI and CLC exhibit distinct distributions of their
respective cluster areas in agreement with expectations. The
cumulative distribution of cluster areas for the CD95 receptor
is positioned between the two controls, demonstrating that CD95
forms small clusters likely consisting of around 0.54 molecules/
nm2 in the plane of the membrane.

3 DISCUSSION

Here we present a user-friendly software solution for cluster
analysis of SMLM data. Our software significantly reduces
processing time and allows the user to select different
algorithms to identify and quantify cluster formation.
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The simplest cluster algorithms, such as nearest-neighbor
algorithms, can answer whether areas of above-average
concentration, clusters, exist in a field of view (Endesfelder
et al., 2014). For a more detailed analysis of clusters found in
cellular membranes, Ripley’s K-function can provide answers to
the length scale of interparticle distances and the proportion of
entities found in clusters in a given dataset (Owen et al., 2010).
However, these methods are prone to artifacts intrinsic to single-
molecule fluorescence-based microscopy approaches, which lead
to small local clusters due to the blinking behavior of individual
fluorophores. To overcome errors due to blinking, approaches

have been developed to determine the degree of clustering in
challenging experimental circumstances, such as for dense
membrane molecules by varying the dye density (Baumgart
et al., 2019; Arnold et al., 2020).

To understand the functional underpinnings of cluster
formation in cell biology, a qualitative view of clustering is not
sufficient, but reproducible, robust quantitative assays are
required. One of the first ideas put forward was to use Ripley’s
function not on the entire sample but on individual localizations
convoluted with a search radius and a clustering threshold for
cluster identification in dense backgrounds. To facilitate the

FIGURE 5 | Practical application of the Bayesian engine on three different target molecules. Three different molecules were coupled to GFP and stained with
nanobodies labeled with Alexa Fluor 647. (A) GPI-GFP in CV-1 cells, (B) CLC-GFP in HeLa cells, and (C) CD95-GFP in T98G cells. Scale bars are 10 µm for the large
reconstructed images and 3 µm for the zoom-ins (i, ii). (D) Plot of the cumulative distribution of cluster areas for the three target molecules. A Kruskal-Wallist-test showd
that the three distributions are significantly different (p < 2e−16).
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differentiation of Ripley’s K function on the entire sample or
individual localizations, we termed the second case Ripley’s-K-
based clustering.

Ripley’s K-based clustering cannot adequately determine
clusters in samples with variations in cluster density and final
cluster size. Therefore, density-based clustering methods, like
DBSCAN (density-based spatial clustering of applications with
noise), have been adapted for SMLM cluster analysis, and they are
less error-prone, as shown before (Pike et al., 2020). In DBSCAN,
the search parameters are the search radius and the minimal
number of data points within this search radius. Points for which
these parameters are valid are counted towards this cluster. After
identifying all clusters, the remaining data points are assigned to
the background, and other parameters such as the individual
cluster area and density can be extracted from the data.

Even though density-based methods, like DBSCAN, can
handle datasets with density variations, they still often fail to
separate individual clusters that are very close to one another but
are easily distinguishable by eye. Additionally, it has been shown
that the detection of clusters by DBSCAN and Ripley’s-K-based
clustering (Pike et al., 2020) can be sensitive to even small changes
in the analytical parameters, possibly leading to artifactual results.
One of the latest introductions to SMLM cluster analysis is
persistence-based clustering which is based on density
estimation (Griffié et al., 2015). The introduced scheme is
called Topological Model Analysis Tool (ToMATo, Pike et al.,
2020; Chazal et al., 2012, 2013). In contrast to the above-
mentioned density-based methods, in this algorithm, local
maxima in molecular density are identified and termed
clusters by introducing a density gradient generated by
creating a path emanating from a molecule to its neighbors
and using the intermolecular distance as a measure of density.
If this intermolecular distance increases, the border of a cluster
may be reached. Such a local maximum in distance or minimum
in density may be a saddle point between clusters or define the
outer perimeter of a cluster. A threshold value defines the
persistence of a cluster from its center into space. Clusters
with persistence smaller than the threshold are assigned to
neighboring clusters, or they are deemed background. As a
result, ToMATo allows for a separation of even partially
overlapping clusters, and additionally, the output clustering
results are less sensitive to analytical input parameters as
compared to Ripley’s K-based clustering and DBSCAN.
Further clustering methods for SMLM data are based on
Voronoï tessellation (Levet et al., 2015), which detects clusters
based on polygonal regions. Voronoï tessellation intrinsically
generates contours of regions of density that may also be used
for boundary detection of cells. Recently, machine-learning has
been employed to improve cluster detection (Williamson et al.,
2020), but the number of input neurons limits the correct
processing of the underlying information. The Bayesian
engine’s main drawback is that due to the calculation and
scoring of thousands of cluster proposals for optimal results,
the process is significantly slowed down compared to traditional
methods with a single cluster proposal, hampering the routine use
of this method. On the other hand, ToMATo clustering

parameters are determined based on a persistence diagram
which can cause user bias.

To overcome these limitations and provide accessible GUI-
based software for state-of-the-art cluster analysis, we
implemented Ripleys-K-based clustering, DBSCAN, and
ToMaTo in a common software that allowed for parallel
computing. In this software, we first improved the Bayesian
engine’s speed by implementing parallel computation and
introduced ToMATo clustering to the Bayesian engine,
thereby dramatically decreasing computational time. In
combination with the software GUI, the Bayesian engine has
an improved user experience and processing speed, which we
hope will make state-of-the-art SMLM cluster analysis available
in many laboratories.

During an SMLM measurement of several thousands of
frames, a fluorescent molecule may cycle several times
between a bright and a dark state, and thus, one molecule
may be detected multiple times within a radius determined by
its localization precision. As a result, it is impossible to
differentiate between a single molecule detected several times
in different frames and different molecules in close proximity
detected in different frames. This is, of course, especially
problematic in cluster analysis, where localizations are
processed first without bias. To overcome this problem, it is
important to develop an understanding of the degree of influence
of blinking in the dataset at hand. As we showed in Figure 4, the
number of the small clusters resulting from dye blinking
decreases with increasing molecular density within the clusters
while keeping the actual cluster size constant. Thus, there is an
intrinsic threshold for relative localization densities inside and
outside clusters that render blinking irrelevant. This holds true
under the assumption that all localizations are caused by dyes
bound to molecules of interest, and no false localizations are
present in the sample. Below this threshold, the number of
detected clusters is highly overestimated, and the cluster radii
are dramatically underestimated. From simulations, we know
that such single-molecule clusters can be detected as sub-peaks
within clusters at low-density ratios. Increasing the density ratio
now increases the chance that clusters are quantified at their true
size. It is common in SMLM data analysis that multiple
temporally and spatially closely correlated localizations are
grouped together in a final reconstruction and are thus
counted as a single molecule. In clustering, this procedure
reduces the number of small background clusters dramatically,
and we analyze this effect in depth in Figure 4. Our grouping is
based on the blinking behavior of the most used (d)STORM dye
Alexa Fluor 647, which we also used in our experiments. Likewise,
we also based our simulations on the blinking behavior of this dye
(Heilemann et al., 2008; Dempsey et al., 2011). In order to detect
clusters of smaller density ratios and smaller sizes either or both,
the cluster detection may be improved by changing the dye or
even the SMLM method from (d)STORM to DNA-PAINT as
shown in Jayasinghe et al. (2018).

Microscopy experiments in cells are much more complex than
the corresponding in-silico experiments because many different
known and unknown cellular processes are involved in the
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temporal and spatial organization of the cell molecules and may
interfere in the process studied. Therefore, we chose highly
abundant molecules as cellular controls for clustering
experiments. A simple positive control is clathrin-coated pits
expressed at a well-defined radius of around 80 nm (A ≈
0.02 µm2) (Sochacki et al., 2017). Negative controls for
clustering in a cellular environment are far more challenging
to identify because natural cellular signaling processes result in a
spatial and temporal reorganization of the involved molecules,
and many membrane molecules exhibit clustering of some extent
(Gowrishankar et al., 2012; Saka et al., 2014; Baumgart et al., 2016;
Kalappurakkal et al., 2020). Therefore, the influence for altering
the negative control’s organization by cell processes should be
kept at a minimum, and an artificially introduced protein that is
only anchored to the outer membrane of the plasma membrane
and has no natural interaction partners, such as GPI, is the ideal
option (Li et al., 2020). These extreme cases of clustering and non-
clustering probes can be well differentiated in their reconstructed
images as well as their cumulative distribution functions. Proteins
with so far unknown spatial distribution on the plasma
membrane, such as the transmembrane receptor CD95, should
present a behavior between these two extremes. If they are less
clustered, they should tend towards a behavior similar to GPI, and
with increasing cluster areas, they should tend towards a
distribution similar to clathrin-coated pits. Since CD95 can be
found at the plasmamembrane as monomers or homodimers and
homotrimers (Micheau et al., 2020), it should be detected as small
clusters, as observed in Figure 5. We conclude that our software
can correctly distinguish between unclustered molecules and
clusters of even small size and a few molecules in number.

Taken together, our work allows the implementation of single-
molecule clustering analysis at a high rate of data throughput for
beginning users. We expect our work to accelerate research in this
area significantly and to contribute to the acceptance of
reproducible standards in clustering data analysis. In future
work, other analytical methods such as Voronoï tessellation
(Andronov et al., 2018; Levet et al., 2015) and extensions to
3D (Griffié et al., 2017) and dual-color co-clustering (Jayasinghe
et al., 2018) may be implemented, and the processing speed may
be further improved, i.e., by the implementation of GPU-
processing.

4 MATERIALS AND METHODS

4.1 Cell Culture and Preparation
CV-1 cells were cultured in a standard DMEM medium (1X,
Gibco) supplemented with 10% FBS (ThermoFisher) and 1%
GlutaMax (100X, Gibco by Life Technologies). Stable HeLa CLC-
GFP cells were cultured in the same medium with an additional
1% Penicillin-Streptomycin (Sigma), and for the T98G CD95-
GFP cells, 1% sodium pyruvate (stock: 100 mM, Gibco) was
added to the medium. The vector CD95-GFP was infected
into the cells with a lentiviral construct. The cells were then
FACS sorted for the stably transfected clones. All cell lines were
regularly tested for mycoplasmas and only used when tested
negative. For the seeding of the cells, 18 mm diameter #1.5 glass

slides (VWR) were cleaned in an ultrasound bath for 20 min
using 2% Hellmanex III (Hellma) and 70% ethanol, respectively.
Afterward, the glasses were dried and plasma cleaned for another
30 min.

4.2 Cell Staining
CV-1 GPI-GFP Cells
Transfection of GPI-GFP into CV-1 cells was done with
lipofectamine 3000 following the standard protocol
(lipofectamine protocol by Invitrogen/ThermoFischer). Cells
were treated with trypsin-EDTA and seeded on the glass slides
for incubation of 24 h (densities: 6 × 106 cells/ml for CV-1, 7 ×
104 cells/ml for HeLa CLC-GFP and T98G CD95-GFP). The
transfected CV-1 cells were fixed with prewarmed 4% PFA
with 0.2% GA in PBS for 20 min at 37°C. Then, cells were
quenched with freshly prepared 0.1% NaBH4 in PBS for 7 min
at room temperature and extensively washed. Cells were blocked
in two steps: for 30 min with ImageIT, followed by 4% goat serum
in 1% BSA in PBS for 1 h. CV-1 GPI-GFP cells were stained with
anti-GFP nanobodies (FluoTag-Q anti-GFP) labeled 1:1 with
Alexa Fluor 647 from NanoTag Biotechnologies GmbH at a
concentration of 50 nM for 1 h. Afterward, cells were postfixed
with 4% PFA and 0.2% GA in PBS for 20 min and quenched with
0.1% NaBH4 in PBS for 5 min at room temperature.

HeLa CLC-GFP Cells
HeLa CLC-GFP cells were fixed with prewarmed 4% PFA in PEM
for 20 min at 37°C and quenched with NH4Cl in PBS for 5 min at
room temperature. After quenching for 5 min with 0.2% saponin
in PEM, the cells were blocked with 4% goat serum in 1% BSA in
PEM for 1 h. HeLa CLC-GFP cells were stained with the NanoTag
Biotechnologies GmbH nanobody for 30 min at a concentration
of 50 nM and afterward post-fixated with 4% PFA in PEM for
20 min at room temperature. The cells were quenched with
NH4Cl in PBS for 5 min. In between all steps, the HeLa cells
were extensively washed with PEM.

T98G CD95-GFP Cells
The T98G CD95-GFP cells were fixed for 20 min at 37°C with
prewarmed 4% PFA plus 0.2% GA in PEM and quenched with
freshly prepared 0.1% NaBH4 in PEM for 7 min T98G cells were
permeabilized with 0.2% saponin in PEM for 5 min and blocked
with 4% goat serum in 1% BSA/PEM for 1 h. The cells were
stained with the NanoTag Biotechnologies GmbH nanobody at a
concentration of 50 nM for 30 min and post-fixated with 4% PFA
with 0.2% GA in PEM for 20 min at room temperature. For the
post-quenching, the cells were incubated in 0.1% NaBH4 in PEM
for 7 min. In between all steps, the cells were extensively washed
with PEM.

4.3 (d)STORM Imaging
The fixed and stained samples were mounted and imaged in beta-
mercaptoethanol and GLOX (2.5 mg/ml glucose oxidase, 0.2 mg/
ml catalase, 200 mM Tris-HCl pH 8.0, 50% glycerol) as imaging
buffer (10:1). The (d)STORM images were acquired on a home
build TIRF microscope as described in (Albrecht et al., 2016). For
the imaging, an Olympus 60x, 1.49 NA back focal plane TIRF
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objective was used to reach a pixel size of 96 nm. The samples
were illuminated with a 639 nm laser (ChangchunNew Industries
Optoelectronics Tech. Co., Ltd.) at powers of 0.008–0.015 mW/
μm2. For the acquisition of the (d)STORM images, a water-cooled
and back-illuminated Photometrics EMCCD camera with 512 ×
512 pixels at a pixel size of 16 × 16 µmwas used for the acquisition
of 30,000 frames at an exposure time of 10 ms. The EMCCD
camera was calibrated before the data acquisition, and the image
acquisition was controlled with MicroManager.

4.4 (d)STROM Reconstruction
The acquired and simulated (d)STORMdatasets were localized using
SMAP (Ries, 2020). Important camera and acquisition parameters
were extracted from themetadata file, which had been saved with the
data. Furthermore, the electron multiplier (EM) gain was set to 300,
and the conversion factor to 6.7 (analog to digital units to photons).
The minimum distance between two candidate peaks in order to be
fitted separately was set to 7 pixels. For the point-spread function
(PSF) fitting, the following parameters were set to a differential of
Gauss with sigma � 1.2, dynamic factor � 1.7, and free PSF, using the
workflow “set Cam parameters.”

4.5 Grouping in SMAP
The grouping procedure is a part of SMAP, which we used for the
reconstruction. The number of frames, dT, for which a single
molecule can be non-fluorescent but still be grouped with the first
localization of that molecule was set to dT � 1. The distance, dX,
the centroid of a single molecule can be shifted in the image plane
between two consecutive frames, but still, be grouped with the
first localization of the molecule, was set to dX � 1. These are the
standard values in SMAP, and they were identified as the optimal
parameter values for out (d)STORM experiments.

4.6 Simulations
Simulations Used for Cluster Algorithm Comparison
The simulations were done with an adapted simulation code
published by Rubin-Delanchy et al. (2015). The number of
clusters, the number of molecules inside each cluster, the
corresponding standard distribution for the cluster size, and
the background percentage were set depending on the analysis.
Unlike the original publication, the cluster centers are set to be at
least two standard distributions apart from each other. In total,
100 simulations were done for each case.

Simulations Used for Computational Time Evaluations
Ten simulations with a standard deviation of 50 nm, 10 clusters
with 100molecules each, and 50%of the total number of localizations
in the background were used to determine the computational cost
for the three cluster algorithms combined with the Bayesian engine.
The field of view had a size of 3,000× 3,000 nm2, and the background
is uniformly distributed. The localization precisions are generated
from a gamma function with shape � 5 and rate � 0.166667 (default
parameters, Griffié et al., 2016).

Simulations With Blinking Molecules
Simulations were prepared in Fluosim (Lagardère et al., 2020).
For the simulation of the sample staining, a geometry file was

created with a python script. The field of view had a size of 25 ×
25 μm2 and was composed of 40 randomly distributed, non-
overlapping clusters with a diameter of 50 nm. The clusters
were positioned with a minimum distance of 500 nm from
any border of the sample. The background image was an
image of the Evolve 512 EMCCD camera (Photometrics)
with a size of 26 × 26 μm2. The pixel size matched the
pixel size of our experimental setup. Each pixel’s noise values
were not considered because only the pixel shape was used in
the further course. The number of molecules was set to 4,000 to
match the density of optimal CV-1 GPI-GFP samples stained
with anti-GFP nanobodies labeled with Alexa Fluor 647. For a
fixed period (5–50 s), the molecules were diffusing within the
field of view with a coefficient of 0,01 μm2/s. A binding rate
of 0,997–1,007 s−1 was set to allow cluster formation inside
the clusters. Outside the designated cluster areas, the
binding rate was set to 0 s−1. After the binding period, the
molecules were freely diffusing for 50 s. During this time,
the binding and unbinding rates within the clusters were set
to zero and set to 0,997–1,007 s−1 outside of the cluster areas,
thereby causing a homogeneous distribution of background
molecules.

For simulating an actual SMLM experiment, the fluorophores’
blinking parameters and the optical properties of the fluorescence
emission were set accordingly. The on-rate was 0.01 s−1, and the
off-rate 10 s−1, based on an estimated 1:1,000 ratio in an SMLM
experiment. For fitting the point-spread function, full-width at
half maximum was fixed at 200 nm with a fluorescence emission
intensity of 2007. As in a microscopy experiment, 5,000 frames
were acquired of the simulated sample, and the exposure time was
set to 10 ms/frame. The output tiff-file was localized in SMAP
with the standard parameters used for SMLM imaging. The
camera parameters were the default values of the Delta 512 as
given by its metadata file.

4.7 Computational Runtime Measurements
To evaluate the implemented cluster algorithms’ speed, we used a
standard 64-bit laptop computer running Linux (Ubuntu 18.04.5
LTS), equipped with GNOME 3.28.2, 7.7 GiB of memory, and 4
Intel® Core™ i5-6200U CPU @ 2.30 GHz processors. The R
library “tictoc” (Izrailev, 2014) was used to measure the time
needed for each dataset to be processed.

4.8 Bayesian Analysis
Cluster Algorithms
The Ripley’s-K-based and DBSCAN cluster algorithms used were
written by (Rubin-Delanchy et al., 2015; Griffié et al., 2016). The
code was adapted for improvement by using functions from
several R packages and the ToMATo cluster algorithm for
SMLM data adapted from the R package RSMLM (Pike et al.,
2020). The library “doParallel” was used for parallel
implementation (Analytics and Weston, 2014).

Bayesian Parameters
All Bayesian cluster scorings were done with the same set of
parameters. The percentage of background localizations was set
to 50%, and the Dirichlet process’s concentration coefficient was
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20. The optimal cluster parameters (radius and threshold) were
searched in the sequences 5 to 300 for the first parameter and 5 to
500 for the second parameter in steps of 5.

Statistical Analysis
The statistical comparison was performed with a self-developed R
script.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

Funding acquisition: AM-V, HE; Software: SaK, RS; Sample
preparation & acquisition: SaK, AZ; Simulations: AZ, RS, and
SaK; Writing – original draft: SaK, HE; Resources: GG, LG, SuK,
AM-V, and JR; Writing – review & editing: SaK, AZ, and HE.

FUNDING

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 278001972 –
TRR 186 to AM-V and HE.

ACKNOWLEDGMENTS

We would like to acknowledge the assistance of the Core Facility
BioSupraMol supported by the DFG. The authors would like to
thank the HPC Service of ZEDAT, Freie Universität Berlin, for
computing time. We acknowledge support by the Open Access
Publication Initiative of Freie Universität Berlin.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbinf.2021.723915/
full#supplementary-material

REFERENCES

Albrecht, D., Winterflood, C. M., Sadeghi, M., Tschager, T., Noé, F., and Ewers, H.
(2016). Nanoscopic Compartmentalization of Membrane Protein Motion at the
Axon Initial Segment. J. Cel Biol. 215, 37–46. doi:10.1083/jcb.201603108

Analytics, R., and Weston, S. (2014). Doparallel: Foreach Parallel Adaptor for the
Parallel Package. R. Package Version 1.016. https://CRAN.R-project.org/
packge�doParallel.

Andronov, L., Michalon, J., Ouararhni, K., Orlov, I., Hamiche, A., Vonesch, J. L.,
et al. (2018). 3dclustervisu: 3d Clustering Analysis of Super-resolution
Microscopy Data by 3d Voronoi Tessellations. Bioinformatics 34,
3004–3012. doi:10.1093/bioinformatics/bty200

Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., and Radenovic, A. (2011b).
Quantitative Photo Activated Localization Microscopy: Unraveling the Effects
of Photoblinking. PLoS ONE 6, e22678. doi:10.1371/journal.pone.0022678

Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U., and Radenovic, A. (2011a).
Identification of Clustering Artifacts in Photoactivated Localization
Microscopy. Nat. Methods 8, 527–528. doi:10.1038/nmEth.1627

Arnold, A. M., Schneider, M. C., Hüsson, C., Sablatnig, R., Brameshuber, M.,
Baumgart, F., et al. (2020). Verifying Molecular Clusters by 2-color Localization
Microscopy and Significance Testing. Sci. Rep. 10, 4230–4312. doi:10.1038/
s41598-020-60976-6

Baumgart, F., Arnold, A. M., Leskovar, K., Staszek, K., Fölser, M., Weghuber,
J., et al. (2016). Varying Label Density Allows Artifact-free Analysis of
Membrane-Protein Nanoclusters. Nat. Methods 13, 661–664. doi:10.1038/
nmeth.3897

Baumgart, F., Arnold, A. M., Rossboth, B. K., Brameshuber, M., and Schütz, G. J.
(2019). What We Talk about whenWe Talk about Nanoclusters.Methods Appl.
Fluoresc 7, 013001. doi:10.1088/2050-6120/aaed0f

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino,
J. S., et al. (2006). Imaging Intracellular Fluorescent Proteins at Nanometer
Resolution. Science 313, 1642–1645. doi:10.1126/science.1127344

Chazal, F., de Silva, V., Glisse, M., and Oudot, S. (2012). The Structure and Stability
of Persistence Modules. Springer.

Chazal, F., Guibas, L. J., Oudot, S. Y., and Skraba, P. (2013). Persistence-based
Clustering in Riemannian Manifolds. J. Acm 60, 1–38. doi:10.1145/2535927

Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., and Zhuang, X. (2011).
Evaluation of Fluorophores for Optimal Performance in Localization-Based
Super-resolution Imaging. Nat. Methods 8, 1027–1036. doi:10.1038/
nmeth.1768

Endesfelder, U., Malkusch, S., Fricke, F., and Heilemann, M. (2014). A Simple
Method to Estimate the Average Localization Precision of a Single-Molecule
Localization Microscopy experiment. Histochem. Cel Biol. 141, 629–638.
doi:10.1007/s00418-014-1192-3

Gowrishankar, K., Ghosh, S., Saha, S., C, R., Mayor, S., and Rao, M. (2012). Active
Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell
Surface Molecules. Cell 149, 1353–1367. doi:10.1016/j.cell.2012.05.008

Griffié, J., Boelen, L., Burn, G., Cope, A. P., and Owen, D. M. (2015). Topographic
Prominence as a Method for Cluster Identification in Single-Molecule
Localisation Data. J. Biophotonics 8, 925–934. doi:10.1002/jbio.201400127

Griffié, J., Shannon, M., Bromley, C. L., Boelen, L., Burn, G. L., Williamson, D. J.,
et al. (2016). A Bayesian Cluster Analysis Method for Single-Molecule
Localization Microscopy Data. Nat. Protoc. 11, 2499–2514. doi:10.1038/
nprot.2016.149

Griffié, J., Shlomovich, L., Williamson, D. J., Shannon, M., Aaron, J., Khuon, S.,
et al. (2017). 3d Bayesian Cluster Analysis of Super-resolution Data Reveals Lat
Recruitment to the T Cell Synapse. Sci. Rep. 7, 4077–4079. doi:10.1038/s41598-
017-04450-w

Heilemann, M., van de Linde, S., Schüttpelz, M., Kasper, R., Seefeldt, B., Mukherjee,
A., et al. (2008). Subdiffraction-resolution Fluorescence Imaging with
Conventional Fluorescent Probes. Angew. Chem. Int. Ed. Engl. 47,
6172–6176. doi:10.1002/anie.200802376

Izrailev, S. (2014). Tictoc: Functions for Timing R Scripts, as Well as
Implementations of Stack and List Structures. R package version 1.

Janeway, C. A., Jr, Travers, P., Walport, M., and Shlomchik, M. J. (2001). “General
Principles of Transmembrane Signaling,” in Immunobiology: The Immune
System in Health and Disease. 5th edition (Garland Science).

Jayasinghe, I., Clowsley, A. H., Lin, R., Lutz, T., Harrison, C., Green, E., et al. (2018).
True Molecular Scale Visualization of Variable Clustering Properties of
Ryanodine Receptors. Cell Rep. 22, 557–567. doi:10.1016/j.celrep.2017.12.045

Jensen, L. G., Hoh, T. Y., Williamson, D. J., Griffié, J., Sage, D., Rubin-Delanchy, P.,
et al. (2021a). Correction of Multiple-Blinking Artefacts in Photoactivated
Localisation Microscopy. bioRxiv.

Jensen, L. G., Williamson, D. J., and Hahn, U. (2021b). Semiparametric point
Process Modelling of Blinking Artifacts in palm. arXiv preprint arXiv:
2101.12285.

Kalappurakkal, J. M., Sil, P., and Mayor, S. (2020). Toward a New Picture of the
Living Plasma Membrane. Protein Sci. 29, 1355–1365. doi:10.1002/pro.3874

Khater, I. M., Nabi, I. R., and Hamarneh, G. (2020). A Review of Super-resolution
Single-Molecule Localization Microscopy Cluster Analysis and Quantification
Methods. Patterns 1, 100038. doi:10.1016/j.patter.2020.100038

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72391511

Kutz et al. GUI-Based Clustering Software

https://www.frontiersin.org/articles/10.3389/fbinf.2021.723915/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.723915/full#supplementary-material
https://doi.org/10.1083/jcb.201603108
https://CRAN.R-project.org/packge=doParallel
https://CRAN.R-project.org/packge=doParallel
https://CRAN.R-project.org/packge=doParallel
https://doi.org/10.1093/bioinformatics/bty200
https://doi.org/10.1371/journal.pone.0022678
https://doi.org/10.1038/nmEth.1627
https://doi.org/10.1038/s41598-020-60976-6
https://doi.org/10.1038/s41598-020-60976-6
https://doi.org/10.1038/nmeth.3897
https://doi.org/10.1038/nmeth.3897
https://doi.org/10.1088/2050-6120/aaed0f
https://doi.org/10.1126/science.1127344
https://doi.org/10.1145/2535927
https://doi.org/10.1038/nmeth.1768
https://doi.org/10.1038/nmeth.1768
https://doi.org/10.1007/s00418-014-1192-3
https://doi.org/10.1016/j.cell.2012.05.008
https://doi.org/10.1002/jbio.201400127
https://doi.org/10.1038/nprot.2016.149
https://doi.org/10.1038/nprot.2016.149
https://doi.org/10.1038/s41598-017-04450-w
https://doi.org/10.1038/s41598-017-04450-w
https://doi.org/10.1002/anie.200802376
https://doi.org/10.1016/j.celrep.2017.12.045
https://doi.org/10.1002/pro.3874
https://doi.org/10.1016/j.patter.2020.100038
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Lagardère, M., Chamma, I., Bouilhol, E., Nikolski, M., and Thoumine, O. (2020).
Fluosim: Simulator of Single Molecule Dynamics for Fluorescence Live-Cell
and Super-resolution Imaging of Membrane Proteins. Sci. Rep. 10,
19954–20014. doi:10.1038/s41598-020-75814-y

Levet, F., Hosy, E., Kechkar, A., Butler, C., Beghin, A., Choquet, D., et al. (2015).
Sr-tesseler: A Method to Segment and Quantify Localization-Based Super-
resolution Microscopy Data. Nat. Methods 12, 1065–1071. doi:10.1038/
nmeth.3579

Levoin, N., Jean, M., Legembre, P., Martin-Villalba, A., Levoin, N., Legembre, P.,
et al. (2020). Cd95 Structure, Aggregation and Cell Signaling. Front. Cel Dev.
Biol. 8, 314. doi:10.3389/fcell.2020.00314

Li, J. H., Santos-Otte, P., Au, B., Rentsch, J., Block, S., and Ewers, H. (2020). Directed
Manipulation of Membrane Proteins by Fluorescent Magnetic Nanoparticles.
Nat. Commun. 11, 4259–4267. doi:10.1038/s41467-020-18087-3

Martin-Villalba, A., Llorens-Bobadilla, E., andWollny, D. (2013). Cd95 in Cancer: Tool
or Target? Trends Mol. Med. 19, 329–335. doi:10.1016/j.molmed.2013.03.002

Nicovich, P. R., Owen, D. M., and Gaus, K. (2017). Turning Single-Molecule
Localization Microscopy into a Quantitative Bioanalytical Tool.Nat. Protoc. 12,
453–460. doi:10.1038/nprot.2016.166

Owen, D. M., Rentero, C., Rossy, J., Magenau, A., Williamson, D., Rodriguez, M.,
et al. (2010). Palm Imaging and Cluster Analysis of Protein Heterogeneity at the
Cell Surface. J. Biophotonics 3, 446–454. doi:10.1002/jbio.200900089

Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002). Seven-transmembrane
Receptors. Nat. Rev. Mol. Cel Biol. 3, 639–650. doi:10.1038/nrm908

Pike, J. A., Khan, A. O., Pallini, C., Thomas, S. G., Mund, M., Ries, J., et al. (2020).
Topological Data Analysis Quantifies Biological Nano-Structure from Single
Molecule Localization Microscopy. Bioinformatics 36, 1614–1621. doi:10.1093/
bioinformatics/btz788

Ries, J. (2020). Smap: a Modular Super-resolution Microscopy Analysis Platform
for Smlm Data. Nat. Methods 17, 870–872. doi:10.1038/s41592-020-0938-1

Ries, J., Kaplan, C., Platonova, E., Eghlidi, H., and Ewers, H. (2012). A Simple,
Versatile Method for Gfp-Based Super-resolution Microscopy via Nanobodies.
Nat. Methods 9, 582–584. doi:10.1038/nmeth.1991

Rubin-Delanchy, P., Burn, G. L., Griffié, J., Williamson, D. J., Heard, N. A., Cope,
A. P., et al. (2015). Bayesian Cluster Identification in Single-Molecule
Localization Microscopy Data. Nat. Methods 12, 1072–1076. doi:10.1038/
nmeth.3612

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit Imaging by
Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 3,
793–796. doi:10.1038/NMETH929

Saka, S. K., Honigmann, A., Eggeling, C., Hell, S. W., Lang, T., and Rizzoli, S.
O. (2014). Multi-protein Assemblies Underlie the Mesoscale Organization
of the Plasma Membrane. Nat. Commun. 5, 4509–4514. doi:10.1038/
ncomms5509

Schultz, G., and Schaefer, M. (2008). Transmembrane Signaling. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1236–1242. doi:10.1007/978-3-
540-38918-7_143

Sochacki, K. A., Dickey, A. M., Strub, M. P., and Taraska, J. W. (2017). Endocytic
Proteins Are Partitioned at the Edge of the Clathrin Lattice in Mammalian
Cells. Nat. Cel Biol. 19, 352–361. doi:10.1038/ncb3498

Williamson, D. J., Burn, G. L., Simoncelli, S., Griffié, J., Peters, R., Davis, D. M., et al.
(2020). Machine Learning for Cluster Analysis of Localization Microscopy
Data. Nat. Commun. 11, 1493–1510. doi:10.1038/s41467-020-15293-x

Williamson, D. J., Owen, D. M., Rossy, J., Magenau, A., Wehrmann, M., Gooding,
J. J., et al. (2011). Pre-existing Clusters of the Adaptor Lat Do Not Participate in
Early T Cell Signaling Events. Nat. Immunol. 12, 655–662. doi:10.1038/ni.2049

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Kutz, Zehrer, Svetlitckii, Gülcüler Balta, Galli, Kleber, Rentsch,
Martin-Villalba and Ewers. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Bioinformatics | www.frontiersin.org October 2021 | Volume 1 | Article 72391512

Kutz et al. GUI-Based Clustering Software

https://doi.org/10.1038/s41598-020-75814-y
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.1038/nmeth.3579
https://doi.org/10.3389/fcell.2020.00314
https://doi.org/10.1038/s41467-020-18087-3
https://doi.org/10.1016/j.molmed.2013.03.002
https://doi.org/10.1038/nprot.2016.166
https://doi.org/10.1002/jbio.200900089
https://doi.org/10.1038/nrm908
https://doi.org/10.1093/bioinformatics/btz788
https://doi.org/10.1093/bioinformatics/btz788
https://doi.org/10.1038/s41592-020-0938-1
https://doi.org/10.1038/nmeth.1991
https://doi.org/10.1038/nmeth.3612
https://doi.org/10.1038/nmeth.3612
https://doi.org/10.1038/NMETH929
https://doi.org/10.1038/ncomms5509
https://doi.org/10.1038/ncomms5509
https://doi.org/10.1007/978-3-540-38918-7_143
https://doi.org/10.1007/978-3-540-38918-7_143
https://doi.org/10.1038/ncb3498
https://doi.org/10.1038/s41467-020-15293-x
https://doi.org/10.1038/ni.2049
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	An Efficient GUI-Based Clustering Software for Simulation and Bayesian Cluster Analysis of Single-Molecule Localization Mic ...
	1 Introduction
	2 Results
	2.1 Structure of the GUI
	2.2 Benchmarking

	3 Discussion
	4 Materials and Methods
	4.1 Cell Culture and Preparation
	4.2 Cell Staining
	CV-1 GPI-GFP Cells
	HeLa CLC-GFP Cells
	T98G CD95-GFP Cells

	4.3 (d)STORM Imaging
	4.4 (d)STROM Reconstruction
	4.5 Grouping in SMAP
	4.6 Simulations
	Simulations Used for Cluster Algorithm Comparison
	Simulations Used for Computational Time Evaluations
	Simulations With Blinking Molecules

	4.7 Computational Runtime Measurements
	4.8 Bayesian Analysis
	Cluster Algorithms
	Bayesian Parameters
	Statistical Analysis


	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


