47 research outputs found

    Oxytetracycline hyper-production through targeted genome reduction of Streptomyces rimosus

    Get PDF
    Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value

    Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing

    Get PDF
    Global yields of potato and tomato crops are reduced owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, wild potato relatives are not and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow 1–3. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine R gene sequence capture (RenSeq4) with single-molecule real-time SMRT sequencing (SMRT RenSeq) to clone Rpi-amr3i . This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSEQ can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops

    Potato virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack

    No full text
    In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus YNTN (PVYNTN) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVYNTN-infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVYNTN-infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVYNTN-infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVYNTN-infected plants before CPB larvae infestation, implicating the importance of PVYNTN infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems

    Salicylic acid perturbs sRNA-Gibberellin regulatory network in immune response of potato to potato virus Y infection

    No full text
    Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level responses to physiological processes. We discovered an interesting novel sRNAs-gibberellin regulatory circuit being activated as early as 3 days post inoculation (dpi) before viral multiplication can be detected. Two endogenous sRNAs, miR167 and phasiRNA931 were predicted to regulate gibberellin biosynthesis genes GA20-oxidase and GA3-oxidase. The increased expression of phasiRNA931 was also reflected in decreased levels of GA3-oxidase transcripts. Moreover, decreased concentration of gibberellin confirmed this regulation. The functional relation between lower activity of gibberellin signaling and reduced disease severity was previously confirmed in Arabidopsis-virus interaction using knockout mutants. We further showed that this regulation is salicylic acid-dependent as the response of sRNA network was attenuated in salicylic acid-depleted transgenic counterpart NahG-Désirée expressing severe disease symptoms. Besides downregulation of gibberellin signaling, regulation of immune receptor transcripts by miR6022 as well as upregulation of miR164, miR167, miR169, miR171, miR319, miR390, and miR393 in tolerant Désirée, revealed striking similarities to responses observed in mutualistic symbiotic interactions. The intertwining of different regulatory networks revealed, shows how developmental signaling, disease symptom development, and stress signaling can be balanced
    corecore