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Supplementary Figure 1. Resistance in S. americanum accession SP1102 is 
physically linked to the R2/Rpi-blb3, C17 and C18 DM reference genome loci. 
(a) 10-week-old S. americanum plants were inoculated with P. infestans strain 88069. Top 

to bottom: accession 954750186 (working name SP2271) is susceptible to the tested 

isolates; accessions 954750174 (SP2272), 954750184 (SP2273) and 944750095 (SP1102) 

are resistant. Each leaf was inoculated with 4-6 droplets containing 500 zoospores each; 

photographs were taken 7 dpi. Scale bar indicates 1cm. This experiment was repeated at 

least three times with similar results (b) Bulked segregant analysis coupled with RenSeq 

enables positioning of Rpi-amr3 on DM reference genome chromosome 4. 50 susceptible 

F2 and F3 plants were genotyped with markers derived from Whole Genome Shotgun 

sequencing (WGS) data. Two flanking markers (WGS_1_4 at 3.59Mb and WGS_2_4 at 

8.69Mb), and eight co-segregating with resistance (WGS markers), were identified. 

Physical positions of NLR genes and markers are given in Mb, based on the reference 

genome. Solid areas mark NLR cluster locations. (c) Genotyping and phenotyping of 405 

plants from a selfed backcross population (BC1F2) confirmed the location of Rpi-amr3 within 

the C18 locus (10 NLRs in reference genome), flanked by markers WGS_2_5 (6.61Mb) and 

WGS_1_11 (7.99Mb), Numbers in brackets indicate number of recombinants out of all 

screened plants. (d) Sequence comparisons of PacBio-RenSeq derived de novo assembly 

with members of the C18 locus identified four homologous sub groups, designated Rpi-

amr3 candidates a-n. Asterisk marks expressed candidates. 

 
 
 
 
 
 



 
 
Supplementary Figure 2. An example of chimeric MiSeq assembly of 2x250bp SP1102 
RenSeq data. 
SPAdes assembled MiSeq sequence contigs were aligned to PacBio derived contigs with 

high stringency (Geneious). Top (red) and bottom (black) – PacBio contigs, middle – 

chimeric MiSeq contig with marked regions fitting PacBio contigs (black and red). Above 

and below SPAdes NODE_643 identity to PacBio Contig_105 and Contig_238 are shown, 

respectively. Grey area in SPAdes contig marks region of NB-ARC domain with 99% 

identity to both PacBio contigs (240nt), which is a part of larger fragment (650nt) displaying 

96% identity between PacBio contigs. Overall identity between PacBio contigs (ORF 

region) is 85% on nucleotide level. ORFs are marked with arrows; NLR typical protein 

domains: coiled-coil (CC; purple box), nucleotide binding site (NB-ARC; blue box) and 

leucine-rich repeats (LRR; green box). Fused protein domain DUF 3542 is shown as light 

purple box. Drawn to scale. 

 

 

 

 



 
 
Supplementary Figure 3. Confirmation of continuity and accuracy of the PacBio ROI 
assembled Contig_7.  
Whole Genome Shotgun (WGS) Illumina 100bp paired-end data were mapped to Contig_7 

(Supplementary File 2) using BWA with default settings and then filtered with SAM tools for 

correctly mapped read pairs. Mapping results were visualized in Savant Genome Browser 

and inspected manually. No signatures of misassembly or indels larger than a single 

nucleotide (typically errors in homopolymeric regions) were noticed. Single visible SNPs (up 

to 50% in nucleotide ratio) in the ORF result from non-specific read mapping from close 

paralogs. From top to bottom: graphical representation of Contig_7 reference sequence as 

assembled from PacBio ROI data; ORF predicted with Geneious R8 (blue bars); WGS 

coverage data, blue color = perfect coverage, various color bars = SNPs or single indels, 

black line marks 30x coverage; WGS data read pairing, blue color = proper pairing, no 

discordant, everted or unmapped pairs present. 

 



 
 
Supplementary Figure 4. Error rate of ROI reads and resulting assemblies. 
(a) Box plot showing accuracy of ROI reads divided into bins based on their length (500 bp 

intervals). ROI reads that were used to de novo assemble the C18 clusters of resistant and 

susceptible parents, were re-aligned to the error corrected contigs. The percentage of 

accuracy was calculated for each individual ROI read based on the pairwise identity. (b) Bar 

graph showing total number of errors per ROI read coverage over de novo assembled 

contigs. WGS data was mapped to de novo assembled contigs of the C18 cluster and the 

mapping data was checked for errors. Colors represent the four bases.   

 



 
 

Supplementary Figure 5. Transient complementation assays in Nicotiana 
benthamiana with six Rpi-amr3 candidates. 
Third leaves of N. benthamiana plants were infiltrated with the binary vector 

pICSLUS0003::35S overexpressing either the late blight resistance gene R2 (positive 

control), six Rpi-amr3 candidates, Rpi-amr3i-S cloned from the susceptible accession 2271 

or GFP (negative control). Leaves are 24 hours later inoculated with P. infestans strain 

88069. Only leaves infiltrated with R2 and Rpi-amr3i remained infection free, while P. 

infestans was able to proliferate on the remaining Rpi-amr3 candidates, the susceptible 

allele of Rpi-amr3i-S as well as the GFP control. Scale bar indicates 1cm. These 

experiments were repeated twice with similar results. 

 

 



 
 
Supplementary Figure 6. Genomic construct with Rpi-amr3i confers resistance 
against P. infestans in a transient complementation assay in N. benthamiana. 
The Rpi-amr3i construct with native promoter and terminator, restricts P. infestans growth 

to the same level as under control of the 35S promoter. A vector overexpressing GFP was 

used as a negative control. The experiment was performed as described previously; 

photographs were taken after 6 days. Scale bar indicates 1cm. This experiment was 

repeated twice with similar results. 

 



 



Supplementary Figure 7. Stable transgenic plants carrying Rpi-amr3i under the 
regulation of a 35S promoter display resistance to all tested isolates. 
Transgenic diploid potato “Line 26” (Solynta B.V.) that express Rpi-amr3i under the 35S 

promoter are resistant to P. infestans isolates 88069 (upper), 06_3928A (middle) and 

EC3527 (bottom; right panel). The transgenic line displays no to weak HR at the place of 

inoculation. In contrast, transgenic plants carrying the non-functional candidate Rpi-amr3a 

(left panel) showed large necrotic lesions and sporulation. Each leaflet was inoculated with 

a droplet containing 500 spores; photographs were taken 6 dpi. Scale bar indicates 1cm. 

These experiments were repeated twice with similar results. 

 

 
 

Supplementary Figure 8. Relative levels of Rpi-amr3i expression under native 
regulatory elements in transgenic potato plants.  
Relative copy number of Rpi-amr3i mRNAs per 1 million copies of EF1 mRNA internal 

control. Expression levels similar to wild-type Rpi-amr3i mRNA (lines 3-7)  correspond to 

full resistance. Level of expression was measured in fully grown leaves from 10 and 14 

week-old plants for Solynta transgenic and WT lines and in 12-week-old SP1102. Errors 

bars show standard deviation based on two time points. Primers show high specificity, as 

no amplification was observed in Solynta WT plants. 
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>Rpi-amr3i protein sequence 
MAAYSAVISLLQTLIDQQNISELFHGHTAQTLDSLHTTAEYFQHVLENITRFDSEKIKSLEEKIRVVVSYAEDVVAMKIS 

QIIIGSSWTFGILQHQDLLPLVEKMDTTKKQVMDILSHDDDQILELTAGDSLIGTSSTTYPMLEDDIVQGIDDDLEIIVK 

RLTGPPRDLDVVTITGMGGIGKTTLARKAYDHLTIRYHFDILVWITISQEFRCRNVLLEALHCISKSTDIVNTKDYDKKD 

DNELADIVQKKLKGPRYLVVVDDIWSRDVWDSIRGIFPNYNNGSRILLTTRENEVAMYANTCSPHEMSLLSLENGWRLLC 

DKVFGPKHDHPPELEEIGKEIVEKCQGLPLTISVIAGHVSKMPRTLECWKDVARTLSEIISSHPDNCLGVLGLSYHHLPN 

HLKPCFLSMSSFPEDFQVETRRLIYLWIAEGFIRTCENGKSLEEVAVDYLEDLISRNLIQARKRRFNGEIKACGIHDLLR 

EFCLIEAEITKHMHVERTYPTLPTQKNNVRRFSFQTKFYSVDDCNKLLPPVARSIYFFSQLDLPVVPYKRYLRCCLPIHR 

DDRIIHDFYSRFNLLRVLVISKTNEYFESFPLVITKLFHLRYLQVRFLGDIPESISNLQNLQTLICSGGTLPGKIWMMKN 

LRYISIIGNKVTYLPSPRTESLVNLEEFSVLCYRSCTKEVISGIPNLKRLTIDVLSSINNYFPNGLIDMSSLTKLEAFKC 

NRCLYSNFNSSVIPTSLKDFVFPTSLKRLSLNYYASHFFWEEISSTIIMLPNLEELKLKDCRSDEYDEWSLSDKDKFKSL 

KLLVLTDIFFDRWEATSDNFPNLKRLVLNKCDLEIPSDFGEICTLESIELHDCSTSAEDSAREIEQEQEEMGNNILKVYI 

HGSRSKF 

 

Supplementary Figure 9. Amino acid sequence of Rpi-amr3i with highlighted 
conserved domains. 
Conserved domains within the sequence are highlighted; coiled-coil, purple; NB-ARC, blue; 

leucine-rich repeats, green.  

 



 
Supplementary Figure 10. Rpi-amr3i establishes a new branch in the phylogeny of 
cloned functional Solanaceae R genes. 
(a) The Rpi-amr3 gene family forms a separate branch among previously cloned R genes. 

Gpa2/Rx represent the closest clade, members share however less than 35% amino-acid 

sequence identity. This maximum likelihood tree is based on the alignment of the full length 

amino-acid sequences of various functional Solanaceae NLR resistance genes, and 

Caenorhabditis elegans protein CED4 as outgroup. The numbers at nodes represent their 

bootstrap support (% support out of 100 bootstraps). (b) The phylogenetic tree of C18 

cluster of R and S parents was constructed as described above, using all NLRs mapping to 

this cluster. C18 cluster members of resistant parent are named Rpi-amr3a-n, names of 



paralogs from susceptible parent start with NLR followed by number (see Supplementary 

File 7 for full NLR list). 

 

Supplementary Tables 
 

Supplementary Table 1. Details of S. americanum accessions used in this study and 

segregation ratio for P. infestans in F2 populations. 

 

Accession  
Working 

name 
Species Place of origin Source Phenotype 

Rpi genes based on F2 

segregation pattern  

954750186 SP2271 S. americanum Brazil RU Susceptible 

 954750184 SP2273 S. americanum var. Patulum unknown RU Resistant 1 

954750174 SP2272 S. americanum unknown RU Resistant 1 

A14750006 

 

S. americanum sensu lato unknown RU Resistant 1 

944750095 SP1102 S. americanum sensu lato Mexico RU Resistant 2 or more 

A54750014 

 

S. americanum sensu lato unknown RU Resistant 2 or more 

SOLA 140 

 

S. americanum Cuba IPK Resistant 2 or more 

SOLA 424 

 

S. americanum Middle America IPK Resistant 2 or more 

SOLA 428 

 

S. americanum Middle America IPK Resistant 2 or more 

SOLA 432 

 

S. americanum Middle America IPK Resistant 2 or more 

10145 

 

S. americanum El Salvador NHM Resistant 1 

Wang 2059 

 

S. americanum China NHM Resistant 1 

Wang 2058 

 

S. americanum China NHM Resistant 1 

       RU - Radboud University, Nijmegen, The Netherlands 

IPK -  IPK Gatersleben, Germany 

NHM - Natural History Museum, London, United Kingdom 

 

 

Supplementary Table 2. The NLR complement of SP2271 and SP1102.  

 

Class 
Full Partial Total 

2271 1102 2271 1102 2271 1102 

TNL 71 44 29 45 100 89 

CNL 330 278 198 222 528 500 

Other* - - 18 26 18 26 

Total 401 322 245 293 646 615 

* No motifs characteristic for CC or TIR domains were detected with MAST pipeline 



Supplementary Table 3. Comparison between MiSeq and PacBio read assemblies for 
SP1102  

  

NLR 

SP1102 # contigs total complete partial unique chimeras 

PacBio 775 615 322 293 327 - 

CLC 52,145 584 124 460 1 - 

SPAdes 30,314 742 216 526 4 5 

 

 
Supplementary Table 4. Non-canonical protein domains fused to NLRs. 

NLR ID Fused domain ID  
Superfamily 

Hit start  
(amino acid) 

Hit stop  
(amino acid) 

e-value 
 

RDC0008NLR0042 DUF659 super family cl04853 277 376 1.20E-25 
RDC0008NLR0047 PspA_IM30 pfam04012 31 199 2.12E-03 
RDC0008NLR0077 PTPc super family cl21483 6 62 9.61E-04 
RDC0008NLR0080 ASF1_hist_chap super family cl22451 55 182 1.22E-03 
RDC0008NLR0088 DUF3542 pfam12061 94 402 4.37E-68 
RDC0008NLR0089 DUF3542 pfam12061 91 471 2.61E-114 
RDC0008NLR0124 DUF3542 pfam12061 94 458 1.33E-109 
RDC0008NLR0125 DUF3542 pfam12061 94 475 1.37E-108 
RDC0008NLR0148 DUF3542 pfam12061 95 470 3.16E-112 
RDC0008NLR0149 DUF3542 pfam12061 91 471 9.07E-108 
RDC0008NLR0157 ASF1_hist_chap super family cl22451 234 315 9.19E-03 
RDC0008NLR0188 DUF3542 pfam12061 91 467 5.73E-115 
RDC0008NLR0218 DUF3542 pfam12061 169 352 8.88E-05 
RDC0008NLR0220 DUF3542 pfam12061 87 463 0.00E+00 
RDC0008NLR0222 DUF3542 pfam12061 390 783 1.82E-99 
RDC0008NLR0265 FlaC super family cl23430 68 201 1.31E-04 
RDC0008NLR0274 DUF3542 pfam12061 91 466 6.15E-111 
RDC0008NLR0276 DUF3542 pfam12061 121 478 1.18E-53 
RDC0008NLR0281 PHA03151 super family cl14512 223 358 1.97E-04 
RDC0008NLR0312 DUF3542 pfam12061 83 481 0.00E+00 
RDC0008NLR0323 DUF3542 pfam12061 242 501 1.03E-05 
RDC0008NLR0329 DUF3542 pfam12061 104 432 8.71E-04 
RDC0008NLR0344 DUF3542 pfam12061 63 461 4.21E-05 
RDC0008NLR0366 DUF3542 pfam12061 91 470 5.37E-116 
RDC0008NLR0419 RNA_pol_3_Rpc31 super family cl13200 135 235 2.44E-03 
RDC0008NLR0443 DUF3542 pfam12061 229 495 9.70E-05 
RDC0008NLR0504 DUF3542 pfam12061 113 487 2.67E-05 
RDC0008NLR0527 DUF3542 pfam12061 95 466 4.50E-30 
RDC0008NLR0548 DUF3542 pfam12061 540 814 1.35E-80 
RDC0008NLR0553 HGD-D super family cl21559 255 396 5.23E-03 
RDC0008NLR0578 DUF3542 pfam12061 22 352 5.02E-170 



RDC0008NLR0612 DUF3542 pfam12061 116 503 5.57E-164 
RDC0008NLR0618 DUF3542 pfam12061 114 505 3.10E-172 
RDC0008NLR0629 DUF3542 pfam12061 73 478 4.38E-156 
RDC0008NLR0631 DUF3542 pfam12061 112 504 5.95E-172 
RDC0008NLR0636 DUF3542 pfam12061 93 498 1.49E-175 
RDC0008NLR0681 DUF3542 pfam12061 87 473 5.83E-170 

 
Supplementary Table 5. cDNA reads count for full length Rpi-amr3 candidates 
 

Gene Reads 
count 

Rpi-amr3a 460 
Rpi-amr3b 5196 
Rpi-amr3c 67 
Rpi-amr3d 11 
Rpi-amr3e 428 
Rpi-amr3f 48 
Rpi-amr3g 0 
Rpi-amr3h 0 
Rpi-amr3i 9032 
Rpi-amr3j 1282 
Rpi-amr3k 510 
Rpi-amr3l 1538 
Rpi-amr3m 68 
Rpi-amr3n 46 

 
Supplementary Table 6. Response of transgenic potato plants containing Rpi-amr3i 

against a range of P. infestans isolates  

 

Isolate Coutry of origin Rpi-amr3 phenotype 

88069 The Netherlands Resistant 

06_3928A United Kingdom Resistant 

MP324 Poland Resistant 

EC1 Ecuador Resistant 

EC3527 Ecuador Resistant 

EC3626 Ecuador Resistant 

 
 
 



Supplementary Table 7. Markers details. 
For marker sequence see Supplementary File 1. 

 

Marker name 
Restriction 

enzyme 
Primer Primer sequence 5’ – 3’ 

RenSeq 

   c14682 NA NA NA 

c469779 NA NA NA 

c77937 NA NA NA 

c67859 NA NA NA 

c208151 NA NA NA 

c51441 NA NA NA 

c313812 NA NA NA 

c212363 NA NA NA 

    WGS 

   R2l_1_11 ClaI R2l_1_11_F CTTTCGATATAGCATGTTTAAGATTACATGA 

  

R2l_1_11_R TAGCTGATCCTGAGAAGGTTAGACTA 

R2l_1_10 HpaI R2l_1_10_F CACGTGAACCAGGTGATTCGAAATG 

  

R2l_1_10_R GAACTATATTAGTGAAGGTTCAGTAGTGC 

R2l_1_9 HaeIII R2l_1_9_F CGTACTCATGTTAGATCCTCCAAAAAATG 

  

R2l_1_9_R TGATTTTGACTCACTCGCTGTGGATGA 

R2l_1_7 HaeII R2l_1_7_F CAAATCTGACTCTGCAATAGGAATTGAC 

  

R2l_1_7_R GTAATTGTCTATGAGGAGAGGGGGTT 

R2l_1_6 ClaI R2l_1_6_F AATCTGGTTCCGAAGAGAAGCCACTTAA 

  

R2l_1_6_R TCTGGAAAATAGGATGGGTAATTTACGAAGA 

R2l_1_3 PCR R2l_1_3_F GCATCAACTCTTTTAGTACTAATTTGGTCTG 

  

R2l_1_3_R CACTGATTCTTAACATGCATATTTAAGGAGA 

R2l_1_4 TaqI R2l_1_4_F CCATCATCTCAAGGATTCTCAAGCTAG 

  

R2l_1_4_R GAGTTACATCAATGAAGTGTCCGTTTTC 

R2l_2_2 AseI R2l_2_2_F GGCGAATGGTCACCTGAAGAAGATAT 

  

R2l_2_2_R AGGATCCGACTATCTAAAAGGTACTCTA 

R2l_2_4 HinfI R2l_2_4_F GAAAATGTAAACAGCAAATAATCATGCTACC 

  

R2l_2_4_R GTAAGAACATATCCCTTATGTCCAACCA 

R2l_2_5 PCR R2l_1_5_F ACTGTGTCATCAGCAAATATGTACAGTTG 

  

R2l_1_5_R ATGGGAAGGTCCTAGAGCTTTTGCAC 

 
 
 



Supplementary Table 8. Primers used to clone candidate Rpi-amr3 genes 
 

Gene Primer Sequence 

Rpi-amr3a KW_35S_amr3a_F GGCTTAAUGTCCTTGCATATCCTGTTTCCAATAATCC 

 

KW_35S_amr3a_R GGTTTAAUCTCTGCATCTGAAAGATAACAAGTACAACTT 

Rpi-amr3b KW_35S_amr3b_F GGTTTAAUTTTAATAATGTGAAGAATCGAACAACTTGT 

 

KW_35S_amr3b_R GGCTTAAUTGTCCTTACATATCCTGTTTCCAATAATCC 

Rpi-amr3i KW_35S_amr3i_F GGCTTAAUTCTTCAATTAAATCCTATCCACTCCTCATC 

 

KW_35S_amr3i_R GGTTTAAUCGAAATATGCTTCCATTTTCCTGCCTATGC 

 

KW_genomic_amr3i_F GGCTTAAUGTCCATATGTGGAAGCTACTCTCTTTGTCCA 

 

KW_genomic_amr3i_R GGTTTAAUTCTCCAAAATGGTCACCAAAACAAGTGCCA 

Rpi-amr3j KW_35S_amr3j_F GGCTTAAUCTATCCACTCCTTACATACCATCAATATTC 

 

KW_35S_amr3j_R GGTTTAAUGCGAAGAATCGAAGAATGTCTTGGAGAGAT 

Rpi-amr3k KW_35S_amr3k_F GGCTTAAUAATGGAACGATATTCAGATTGACTTACCAAA 

 

KW_35S_amr3k_R GGTTTAAUGTGAAGAATCGAACAACTTTTTGGAGAGAT 

Rpi-amr3l KW_35S_amr3l_F GGCTTAAUCTTGTTCATCATTTTTGAAAATTAAT 

 

KW_35S_amr3l_R GGTTTAAUTTGGGGTGTGAGTTAGGTCCAAGACTTAAT 

   In bold - extension for USER cloning 

 Normal font - gene specific sequence 

 

   35S - primers to clone gene into expression vector under 35S promoter and OCS terminator 

genomic - primers to clone gene into expression vector under the control of  native regulatory elements 

 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 9. Reference NLR genes for phylogenetic studies. 
 

Gene name Reference species 
GenBank/patent 

number 
Protein class 

CED-4 Caenorhabditis elegans NP_001021202 outgroup 

ADR1 Arabidopsis thaliana NP_174620 CNL 

Bs4 Solanum lycopersicum AY438027 TNL 

Bs2 Capsicum chacoense AF202179 CNL 

Gpa2 Solanum tuberosum AAF04603 CNL 

Gro1-4 Solanum tuberosum AAP44390 TNL 

Hero Solanum lycopersicum AX337980 CNL 

I-2 Solanum lycopersicum AF118127 CNL 

L6 Linum usitatissimum AAD25968 TNL 

M Linum usitatissimum AAB47618 TNL 

Mi-1.2 Solanum lycopersicum AF039682 CNL 

N Nicotiana glutinosa Q40392 TNL 

NRG1 Nicotiana benthamiana AAY54606 CNL 

NRC1 Solanum lycopersicum DQ304484 CNL 

Ph3 Solanum lycopersicum KJ563933 CNL 

Prf Solanum lycopersicum AAC49408 CNL 

RPS2 Arabidopsis thaliana AAM90881 CNL 

R1 Solanum demissum AF447489 CNL 

R2 Solanum demissum FJ536325 CNL 

R3a Solanum demissum AY849382 CNL 

R3b Solanum demissum JF900492 CNL 

Rpi-chc1 Solanum chacoense WO2011034433 CNL 

Rpi-blb1 Solanum bulbocastanum FB764493 CNL 

Rpi-blb2 Solanum bulbocastanum DQ122125 CNL 

Rpi-blb3 Solanum bulbocastanum FJ536326 CNL 

Rpi-vnt1.1 Solanum venturii FJ423044 CNL 

Rpi-mcq1 Solanum mochiquense WO2009013468 CNL 

Rx Solanum tuberosum AJ011801 CNL 

Rx2 Solanum acaule CAB56299 CNL 

Ry-1 Solanum tuberosum CAC82812 TNL 

Sw-5 Solanum lycopersicum AY007366 CNL 

Tm2 Solanum lycopersicum AY742887 CNL 

 

 

 

 

 

 

 

 

 

 

 

  



Supplementary Data and Methods 
 

Plant material  

Seeds of Solanum accessions were obtained from seed banks as detailed in 

Supplementary Table 1. Accessions 944750095, A54750014 and A14750006 were 

originally described as the hexaploid S. nigrum in the seed database at Radboud University 

(Nijmegen, The Netherlands). Flow cytometric analyses that we carried out identified these 

however as diploid S. americanum. This is similar to earlier misidentifications between 

these very similar species22. Solanum taxonomy is not the focus of this paper, and all 

accessions used here are regarded as belonging to S. americanum sensu lato. S. 

americanum plants used in this study were grown in our greenhouse facilities.  

DNA and RNA extraction 

RenSeq experiments were conducted on gDNA freshly extracted from young leaves (both 

MiSeq and PacBio protocols) using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol. For the cDNA RenSeq experiment, RNA was 

extracted using TRI-reagent (Sigma- Aldrich, MO, USA) and Directzol RNA Mini-prep kit 

(Zymo Research, CA, USA), following manufacturer’s recommendations. First-strand cDNA 

was made using a mix of oligo-dT and random hexamer primers and First-Strand 

Superscript II (Sigma-Aldrich, MO, USA). The second strand was made as described 

elsewhere21.  

Quantitative-RT_PCR 

For quantitative Reverse Transcription PCR, first strand cDNA was made as described 

above from 2 µg of starting RNA. The cDNA (1µl of 1:5 dilution) was used to quantify Rpi-

amr3i expression using a SYBR Green quantitative PCR kit (Sigma- Aldrich, MO, USA) and 

gene specific primers (F: CTGAGGATTCTGCACGAGAGATTG, R: 
TCATCATAACTTCAAGGAGGTAAG). Expression was quantified to the internal control 

elongation factor-1 alpha (EF1α), using primers described by23. Measurement for each 

plant and type of primers was performed in three technical replicates. Themocycling and 

intensity detection was carried out with Biorad CFX96 cycler and data extraction with CFX 

Manager software. 



Phytophthora infestans strains, infections and DLA assays. 

P. infestans isolate MP32424 was provided by Jadwiga Śliwka from the Plant Breeding and 

Acclimatization Institute – National Research Institute, Mlochow Centre (Poland) and the 

remaining isolates were maintained in our laboratory as described previously25. Detached 

leaf assays (DLA) on leaves of S. americanum and stable transgenic S. tuberosum Solynta 

plants (see below) were carried out as described by25 with minor modifications. Three 

leaves from 8 to 12-week-old plants were used and infected with 6 to 8 10 µl droplets of a 

freshly prepared and 3 hour cold-incubated zoospore suspension (50,000 zoospores ml–1) 

from 10-day old rye agar (RSA26) plate. Inoculated leaves were incubated for 6 to 12 days 

under controlled environmental conditions (16°C, 16 h of light and 8 h of dark) before 

phenotypes were scored, as described for S. nigrum by9,27. 

Whole Genome Shotgun (WGS) sequencing 

WGS sequencing was outsourced to BGI (www.genomics.cn). Fresh leaves from young 

plants were shipped on dry ice to BGI, where gDNA isolation, library construction, Illumina 

HiSeq sequencing and initial quality control (trimmed adapters and removed reads which 

contain more than 50% bases with quality value <=5) were carried out. Each accession was 

sequenced to around 30x coverage, resulting in 346.15M and 379.53M reads for R an S 

parent, respectively. Reads after initial QC were deposited in ENA under run accession 

numbers ERR966154-56 and ERR966142-45 for the resistant and susceptible parent, 

respectively. 

 

RenSeq library preparation and enrichment 

For the Illumina MiSeq RenSeq experiment, 2 µg of gDNA were fragmented with the 

Covaris sonicator (Covaris Inc. MA, USA) using preset 1 kb settings. Fragments were size 

selected for fragments longer than 500bp using AmPureXP beads (Beckman Coulter, CA, 

USA) with 1:0.55 ratio of sheared DNA to AMPureXP beads. Double-stranded cDNA 

prepared as described above was used directly for library preparation, without shearing or 

size selection. Illumina MiSeq gDNA and cDNA libraries were prepared using the NEBNext 

Ultra DNA Library Prep Kit for Illumina (New England Biolabs, Inc., Ipswich, MA, USA) 

following Manufacturer’s instructions. Target capture was carried out using a custom 

MYcroarray MYbaits kit (MI, USA) and the corresponding protocol. The bait library was 



designed as described8 and comprises 20,000 unique 120-mer oligos. 10 µl of enriched 

library was PCR amplified (KAPA HiFi enzyme) up to a quantity of 1 µg in 50 µl reaction 

volumes using Illumina P5 and P7 primers (Illumina Inc. CA, USA). MiSeq 250-bp paired 

end (PE) sequencing was carried out at The Genome Analysis Center (TGAC, Norwich 

Research Park, UK), and generated 2,454,724, 2,824,501, 4,697,915 and 1,675,385 PE 

reads. Raw reads were deposited at ENA under run accession numbers ERR966152, 

ERR965967, ERR966146-47 and ERR966153 for resistant parent (R), susceptible parent 

(S), bulked susceptible (BS) and R parent cDNA, respectively. 

 

A detailed protocol for the SMRT RenSeq library preparation and enrichment that we 

describe in this manuscript is deposited at Protocol Exchange website 

(http://www.nature.com/protocolexchange/, Jonathan Jones Lab, SMRT RenSeq Protocol). 

Briefly, we Covaris sheared and pre-selected gDNA fragments longer than 2 kb using 

AMPureXP beads in a ratio 1:0.4, and generated sequencing libraries with the NEBNext 

Ultra DNA Library Prep Kit for Illumina (NEB, MA, USA). NLR gene fragments were then 

captured using the custom MYcroarray MYbaits bait library. Single reactions were carried 

out in one-half reaction volume per each sample. Enriched libraries were PCR amplified to 

10-20 µg (P5 and P7 primers, KAPA HiFi enzyme) and subsequently size-selected with the 

BluePippin system (Sage Science, MA, USA) prior PacBio RSII SMRT sequencing at The 

Genome Analysis Center (TGAC, Norwich Research Park, UK). DNA was size selected 

using Blue Pippin for 1.5 kb, 2.5 kb and longer fragments from SP1102 (R parent) libraries, 

and 3 kb and longer fragments from SP2271 libraries (S parent). Samples were sequenced 

with P5-C3 chemistry and P6-C4 chemistry for R and S parents, respectively. The samples 

were sequenced on one (1.5 kb), two (2.5 kb) and three (3-4 kb) individual SMRT cells. 

Reads of Insert (ROI, >3 full passes and >90% accuracy settings using the SMRT Portal 

software), trimmed by 65 nt at both ends to remove Illumina adaptors, were deposited at 

ENA under run accession numbers ERR966169, ERR966170 and ERR966123 for 1.5kb R, 

2.5kb R and S parents respectively. 

 

Illumina data processing 

Quality control, mapping and SNP calling of Illumina Inc. (San Diego, CA, USA) paired-end 

sequences (both RenSeq MiSeq and WGS data) were carried out using tools embedded in 

The Sainsbury Laboratory (TSL) customized Galaxy platform28, if not noted otherwise.  



 

Genetic Mapping of Rpi-amr3  

Pathogen inoculations on leaves of young F2 plants (F1 SP2271 x SP1102) revealed 99 

resistant and 6 susceptible plants (15:1 segregation; χ2=0.02 p=0.95), suggesting two 

unlinked Rpi genes. These genes were genetically separated by self-pollination of resistant 

F2 plants, and four F3 populations were selected that segregated 3:1 for disease resistance. 

We hypothesized that resistance is conferred by a NLR gene, and conducted a multiplexed 

NLR capture experiment on DNA of the resistant (R) and susceptible (S) parents, as well as 

bulked DNA of the 50 most susceptible F2 and F3 plants (bulked susceptible, BS). To 

position the Rpi-amr3 resistance locus on the S. tuberosum DM29 reference chromosomes, 

we performed SNP calling as described by4 with minor modifications. We de novo 

assembled quality controlled R reads (Q>20, no unambiguous nucleotides allowed) using 

SPAdes16 with the multiple k-mer option (command line options: -k 21,33,55,77,99,127 --

pe1-1 --pe1-2 –careful). We mapped R, S and BS reads onto the assembled R contigs 

(using BWA30 with; default settings), and called polymorphisms using SAM tools30. To 

identify linked polymorphisms, we looked for SNPs between R and S parent (100% 

alternate allele in S reads mapping results to R assembly) with coverage above 50, and 

absent (>95% alternate allele) from BS reads mapping to R assembly. Positive contigs 

were subsequently used in BLAST searches31 against the DM reference genome (>80% 

identity >1kb) to identify the most likely position, see Supplementary Table 7 and 

Supplementary File 1 for marker details. This analysis allowed us to position the underlying 

resistance gene on Ch 4: 3.5-8.5Mb. This region carries three NLR cluster in the potato and 

tomato reference genomes, the R2/Rpi-blb3 cluster and the uncharacterized cluster C17 

and C18, see Supplementary Figure 1b for details. 

To fine-map the resistance locus, and to separate the three candidate NLR gene clusters 

(R2/Rpi-blb3, C17 and C18) based on the reference DM, we developed Cleaved Amplified 

Polymorphic Sequences (CAPS32) markers between them. We de novo assembled WGS 

data with CLC Assembly Cell (www.clcbio.com) using default settings, and anchored the 

assembled contigs to the reference DM genome using BLAST (>80% identity, >2kb) and 

selected those flanking each of the three clusters. We mapped R and S WGS reads to the 

selected contigs using BWA with default settings and called homozygous (100%) 

polymorphisms between them as described in4. Polymorphic positions and sequences 



around them (5 nt each side) were manually analyzed in Geneious R8 for differential 

restriction enzyme recognition sites. Primers were designed manually to flank the predicted 

polymorphic positions on the selected contigs (Supplementary Table 7 and Supplementary 

File 1 for marker details) using Geneious R8 and amplified from R, S and BS gDNA in 25 µl 

PCR reactions (35 cycles at 58°C), using homemade Taq polymerase and digested with 

the appropriate restriction enzyme (New England Biolabs, Inc., Ipswich, MA, USA) for 2 h at 

the required temperature. Digestion products were visualized on 1.5% agarose gels. 

Two markers, WGS_1_4 (3.59 Mb) and WGS_2_4 (8.69 Mb) recombined with resistance, 

while the remaining markers ‘co-segregated with resistance’ in screens on the initial 50 BS 

plants (Supplementary Figure 1 b). To resolve the complex physical NLR cluster structure 

with more recombination events, we created a larger mapping population by backcrossing 

the resistant F1 plant to the susceptible SP2271 (female parent). Eight resistant BC1F1 

plants (heterozygous at WGS_1_4 and WGS_2_4) were self-pollinated and between 60-

100 plants of eight BC1F2 populations were screened with P. infestans isolate 06_3928A. 

Two populations (SP3534 and SP3543) segregated 3:1 for resistance and 210 and 195 

plants respectively, were phenotyped with 06_3928A. Genotyping identified 41 new 

recombinants between WGS_1_11 and WGS_2_5, which were further genotyped with 

marker WGS_2_5, revealing recombinants between the R2/Rpi-blb3 and C18 clusters 

(Supplementary Figure 1b and 1c), and confirming that the candidate gene Rpi-amr3i is a 

member of cluster C18 (Supplementary Figure 1c). 

 

PacBio ROI analysis and assembly 

All PacBio ROI data were processed and analyzed using Geneious R8 

(www.geneious.com). Raw reads were processed using Pacific Biosciences SMRT Portal 

(http://www.pacificbiosciences.com) to generate ROI reads (>3 full passes and >90% 

accuracy). No further quality control steps were performed on these reads, except that we 

trimmed Illumina adapter sequences (65 nt at each end). To analyze enrichment efficiency 

we used the NLR-specific MAST pipeline on six-frame translations of all ROIs and 

subsequently the NLR-parser10,15.  

ROI reads were assembled using the native Geneious R8 assembler allowing for 1% 

mismatches, 1% gaps (no longer than 3 bp) and minimal read overlap (>100 nt with 98% 



identity). As a valid assembly we considered contigs supported by at least five reads with 

minimum two fold average coverage. We found this assembler very useful and user-

friendly, and flexible enough to handle PacBio specific read errors that consist of either 

incorrect bases or short indels. It is a “greedy” algorithm which is similar to that used in 

multiple sequence alignment and uses a blast-like approach to find best matching reads 

which are then merged into a contig, followed by fine tuning and heuristics to improve 

assembly33. 

All contigs were run through the MAST and NLR-parser10,15 to select those harboring NLR 

sequences. To validate the assembly we mapped WGS 100bp PE reads to NLR selected 

contigs using BWA and inspected manually for chimeric assemblies with discordant read 

mapping using the Savant Genome Browser (www.genomesavant.com). However, we 

noticed that within regions of low coverage (especially less than 3x – see below), the 

homopolymeric nucleotide count was not always correct, especially towards the less 

covered contig ends where correction of sequencing errors was not supported. In these 

cases, we identified the correct nucleotide count by mapping WGS and MiSeq RenSeq 

250bp PE reads using BWA default settings and called homozygous polymorphism as 

described in4. PacBio assembly errors were then corrected manually in Geneious R8, 

according to the results from MiSeq RenSeq reads mapping. 

All assembled and annotated NLR genes from this study received ID’s following a 

convention previously suggested in4,8. Susceptible line SP2271 has prefix RDC0008 

followed by NLR number; e.g. RDC0008NLR0001. As we discuss only one NLR family in 

this paper, on the phylogenetic trees we omit RDC0008 prefix to simplify naming. 

Comparative analysis between RenSeq PacBio and MiSeq assemblies 

While we use MiSeq RenSeq data (250 bp) in this study to identify SNPs in the resistant 

parent (SP1102) that are depleted in susceptible plants (SP2271), we are in the position to 

test our claim that this short-read data is not suitable to assemble the repetitive NLR 

complement. We assembled MiSeq R parent data using SPAdes16 and CLC 

(www.clcbio.com) (see Illumina data processing and Genetic Mapping of Rpi-amr3), 
and PacBio ROI with the Geneious R8 assembly option (www.geneious.com). All contigs 

were subsequently analyzed for the presence of NLR sequences using the MAST and NLR-

parser pipeline 15 (Supplementary Table 3). De novo assembly of PacBio ROIs resulted in 



615 NLR encoding contigs with 322 complete and 293 partial sequences. We used these 

contigs to test the top-level performance of the two short-read assemblers. SPAdes 

produced 742 NLR contigs, of which 216 were annotated as complete by our NLR-parser 

pipeline, whereas CLC generated 124 complete contigs.  Local alignments were carried out 

using blastn to identify SPAdes and CLC contigs that are covered over 99% at an identity 

98% to a PacBio assembled contig (main text). The reciprocal search identified four 

SPAdes and one CLC contig without similar sequence in the PacBio pool. We further 

searched for the occurrence of chimeric assemblies as contigs that share stretches with 

over 98% identity with more than one PacBio derived sequence (main text). Interestingly 

the NLRs assembled from MiSeq data share only 51% (SPAdes) and 66% (CLC) of the 

target genes, while 49% and 34% are uniquely assembled sequences. The CC-NB-

LRR:TIR-NB-LRR ratio amongst uniquely identified NLRs was 2.7:1 for CLC and 4.4:1 for 

SPADES, not showing a specific bias or enrichment.  We computed the additional flanking 

region for the 5’ sequence of all contigs as the distance between nucleotide 1 and the start 

of the first NLR specific motif (NLR-parser result).  

Analysis of ROI reads and de novo assembled contigs accuracy.  

We selected the C18 cluster contigs from the resistant and susceptible parental lines, to 

analyze the error rate in ROIs and  in de novo assembly of ROI data. To correct errors in 

the assembly we mapped Illumina WGS reads and MiSeq-RenSeq using BWA with default 

settings, and then filtered with SAM tools for correctly mapped read pairs. Mapping data 

were visualized in Savant Genome Browser and in total 276,111bp were analyzed for 

errors. We considered only positions with 20-40x coverage of WGS data and 150-500x 

coverage of MiSeq-RenSeq data (available in coding sequences mostly), while higher 

coverage (less than 5% of analyzed contigs) suggested mismapping from close paralogues 

or presence of transposons. Positions that had 95% alternative allele compared to 

reference, were considered errors. We then used this information to manually correct errors 

in the contigs using Geneious software. 

These manually corrected contigs were further used to analyze accuracy of ROI reads used 

for de novo assembly of C18. We aligned ROI using blastn and calculated accuracy of ROI 

from percentage of pairwise identity. 

  



Cloning of the candidate ORFs and transient complementation assay 

To facilitate cloning of the candidate Rpi-amr3 coding sequences we designed PCR primers 

flanking each predicted ORF from six selected PacBio contigs. All primers were 

supplemented with specific 5’ and 3’ extensions to make them compatible with custom 

USER expression vectors34 used in this study (Supplementary Table 8). Candidate genes 

were PCR amplified from R parent gDNA in 50µl PCR reactions (35 cycles with annealing 

at 60oC and 5 min extension at 68oC) using Platinum Pfx DNA Polymerase (Life 

Technologies, Carlsbad, CA, USA). 30 ng of purified PCR product was hybridized with 30ng 

pICSLUS0003::35S (see Supplementary File 6 for an annotated vector sequence) in the 

presence of 1 µl of USER enzyme mix (New England Biolabs, Inc., MA, USA). All 

constructs were verified by DNA sequencing. Plasmids containing the candidate genes 

were transformed into Agrobacterium strain Agl1 and used for transient complementation 

assays as well as stable potato transformations. To create a genomic construct of Rpi-

amr3i under its native regulatory elements, we PCR amplified the whole contig (5352 bp, 

Figure 2c) that was assembled from PacBio reads. Although the ends were from single 

reads, we were able to amplify the full contig sequence. PCR amplicons were hybridized 

into USER-vector pICSLUS0001 (see Supplementary File 7 for annotated vector 

sequence), lacking 35S promoter and OCS terminator. 

 

Transient complementation assays were carried out as described by34,35 and photographs 

were taken at 6 dpi. 

 

Stable transgenic potato plants 

We created stable transgenic plants with constructs carrying Rpi-amr3 candidates under 

35S and Rpi-amr3i under the control of its native regulatory elements in the diploid 

homozygous Solynta Research line nr 26 (www.solynta.com) as described36. For Rpi-

amr3i, 14 (native promoter) and 27 (35S promoter) plants were positively tested for 

transgene presence (PCR) and further phenotyped with P. infestans isolates 88069 and 

06_3928A.  We observed 5 (35%) and 5 (19%) fully resistant plants with native and 35S 

promoter constructs, respectively, while the remaining plants had intermediate levels of 

resistance. We further measured levels of Rpi-amr3i expression in plants with native 

regulatory elements (Supplementary Figure 8) and observed a link between number of 



mRNA copies and level of resistance. Plants with gene expression similar to R parent 

showed full resistance (lines 3-7), while remaining had intermediate phenotypes. One fully 

resistant plant of each type (number 7 for Rpi-amr3i under native regulatory elements) was 

selected and tested with multiple P. infestans isolates, see Figure 3b, Supplementary Table 

5 and Supplementary Figure 7. For the remaining Rpi-amr3 candidate constructs, we PCR 

screened 10-15 transgenic plants and further phenotyped all selected (7-10 per construct) 

in DLA assays with 88069 and 06_3928A P. infestans isolates. All plants were susceptible 

(data not shown). 

 

Phylogenetic analyses 

We constructed a phylogenetic tree of SP2271 NLRs as described by8,10 with minor 

modifications. De novo assembled contigs with PacBio ROI data containing multiple NLRs 

were manually split into single NLR genes (Supplementary File 4) in Geneious R8 using 

ORF-finding function and positional MAST NLR-motif information. For the tree construction 

we used only complete NLRs determined by the NLR-parser15 based on the MAST result 

(Supplementary File 5). To identify the NB-ARC domain sequences used for the 

phylogenetic analysis, amino acid sequences of the NB-ARC domain of reference R genes 

(reported in Supplementary Table 9), were used to search in a Blastx analysis with an 

expected value of <1e−3  and predicted NB-ARC domains were verified with MAST NLR-

motif10,15 (Supplementary File 3). All the sequences were aligned using ClustalW 1.7437. 

Evolutionary analyses were conducted using MEGA638 using Poisson (G+I) model with 100 

bootstraps.  

 

Detection of fused protein domains  

To detect fusions between a canonical NLR sequence and a different protein, we took 

advantage of the assembled NLR flanking regions and analysed all 2271 NLRs 

(Supplementary File 4) with AUGUSTUS39 to predict potential protein coding sequences. 

Translated protein sequences were subjected to BLAST Conserved Domains search using 

the online tool http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi 40 and CDD v3.14 

database with default settings (e-value 0.01 and suppression of weak overlapping hits). 

NLR loci with potential fusion domains were manually annotated in Geneious R8 using the 

ORF-finding function, AUGUSTUS gene prediction information and positional MAST NLR-



motif information (Supplementary File 5) to predict potential start and stop codons. 

Manually verified ORFs were again subjected to BLAST Conserved Domains search as 

described above to verify fused domains (Supplementary Table 4). We observed potential 

additional fused domains adjacent to annotated ORFs, however, due to lack of RNA 

sequencing data we do not report them in this paper as fused domains. Detailed analysis of 

NLR complement of these accessions will be reported elsewhere.  

 

List of Supplementary Files. 
 
Supplementary File 1. Fasta-file containing all marker sequences used to position and 

map the Rpi-amr3 gene. 

Supplementary File 2. Fasta file containing Contig_7.  

Supplementary File 3. Fasta-file containing NB-ARC domains of all genes used for 

phylogenetic tree construction. 

Supplementary File 4. Fasta file containing complete NLRs of SP2271 accession 

annotated with MAST search output. 

Supplementary File 5. MAST search result for SP2271 NLRs loci. 
Supplementary File 6. Annotated sequence of the pICSLUS0003 vector in GeneBank 

format. 
Supplementary File 7. Annotated sequence of the pICSLUS0001 vector in GeneBank 

format. 
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