393 research outputs found

    The impact of celestial pole offset modelling on VLBI UT1 Intensive results

    Full text link
    Very Long Baseline Interferometry (VLBI) Intensive sessions are scheduled to provide operational Universal Time (UT1) determinations with low latency. UT1 estimates obtained from these observations heavily depend on the model of the celestial pole motion used during data processing. However, even the most accurate precession-nutation model, IAU 2000/2006, is not accurate enough to realize the full potential of VLBI observations. To achieve the highest possible accuracy in UT1 estimates, a celestial pole offset (CPO), which is the difference between the actual and modelled precession-nutation angles, should be applied. Three CPO models are currently available for users. In this paper, these models have been tested and the differences between UT1 estimates obtained with those models are investigated. It has been shown that neglecting CPO modelling during VLBI UT1 Intensive processing causes systematic errors in UT1 series of up to 20 microarcseconds. It has been also found that using different CPO models causes the differences in UT1 estimates reaching 10 microarcseconds. Obtained results are applicable to the satellite data processing as well.Comment: 8 pp., accepted for publication in Journal of Geodes

    Dynamics and Efficiency of Brownian Rotors

    Full text link
    Brownian rotors play an important role in biological systems and in future nano-technological applications. However the mechanisms determining their dynamics, efficiency and performance remain to be characterized. Here the F0 portion of the F-ATP synthase is considered as a paradigm of a Brownian rotor. In a generic analytical model we analyze the stochastic rotation of F0-like motors as a function of the driving free energy difference and of the free energy profile the rotor is subjected to. The latter is composed of the rotor interaction with its surroundings, of the free energy of chemical transitions, and of the workload. The dynamics and mechanical efficiency of the rotor depends on the magnitude of its stochastic motion driven by the free energy energy difference and its rectification on the reaction-diffusion path. We analyze which free energy profiles provide maximum flow and how their arrangement on the underlying reaction-diffusion path affects rectification and -- by this -- the efficiency.Comment: 22 pages, 11 figures, pdflatex, JCP in pres

    Levodopa‐induced dyskinesia are mediated by cortical gamma oscillations in experimental Parkinsonism

    Get PDF
    Background Levodopa is the most efficacious drug in the symptomatic therapy of motor symptoms in Parkinson's disease (PD); however, long‐term treatment is often complicated by troublesome levodopa‐induced dyskinesia (LID). Recent evidence suggests that LID might be related to increased cortical gamma oscillations. Objective The objective of this study was to test the hypothesis that cortical high‐gamma network activity relates to LID in the 6‐hydroxydopamine model and to identify new biomarkers for adaptive deep brain stimulation (DBS) therapy in PD. Methods We recorded and analyzed primary motor cortex (M1) electrocorticogram data and motor behavior in freely moving 6‐OHDA lesioned rats before and during a daily treatment with levodopa for 3 weeks. The results were correlated with the abnormal involuntary movement score (AIMS) and used for generalized linear modeling (GLM). Results Levodopa reverted motor impairment, suppressed beta activity, and, with repeated administration, led to a progressive enhancement of LID. Concurrently, we observed a highly significant stepwise amplitude increase in finely tuned gamma (FTG) activity and gamma centroid frequency. Whereas AIMS and FTG reached their maximum after the 4th injection and remained on a stable plateau thereafter, the centroid frequency of the FTG power continued to increase thereafter. Among the analyzed gamma activity parameters, the fraction of longest gamma bursts showed the strongest correlation with AIMS. Using a GLM, it was possible to accurately predict AIMS from cortical recordings. Conclusions FTG activity is tightly linked to LID and should be studied as a biomarker for adaptive DBS

    Analysis of the Accuracy of Prediction of the Celestial Pole Motion

    Full text link
    VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession- nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models---namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.Comment: 13 p

    v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    No full text
    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion

    Novel Weak Decays in Doubly Strange Systems

    Get PDF
    The strangeness-changing (ΔS=1\Delta S = 1) weak baryon-baryon interaction is studied through the nonmesonic weak decay of double-Λ\Lambda hypernuclei. Besides the usual nucleon-induced decay ΛNNN\Lambda N \to N N we discuss novel hyperon-induced decay modes ΛΛΛN\Lambda \Lambda \to \Lambda N and ΛΛΣN\Lambda \Lambda \to \Sigma N. These reactions provide unique access to the exotic ΛΛ\Lambda \LambdaK and ΛΣ\Lambda \SigmaK vertices which place new constraints on Chiral Pertubation Theory (χ\chiPT) in the weak SU(3) sector. Within a meson-exchange framework, we use the pseudoscalar π,η,K\pi,\eta,K octet for the long-range part while parametrizing the short-range part through the vector mesons ρ,ω,K\rho, \omega, K^*. Realistic baryon-baryon forces for the S=0,1S=0,-1 and -2 sectors account for the strong interaction in the initial and final states. For ΛΛ6^6_{\Lambda \Lambda}He the new hyperon-induced decay modes account for up to 4% of the total nonmesonic decay rate. Predictions are made for all possible nonmesonic decay modes.Comment: 19 pages, 2 ps figures, 9 table

    Structural constraints for the Crh protein from solid-state NMR experiments

    Get PDF
    We demonstrate that short, medium and long-range constraints can be extracted from proton mediated, rare-spin detected correlation solid-state NMR experiments for the microcrystalline 10.4 × 2 kDa dimeric model protein Crh. Magnetization build-up curves from cross signals in NHHC and CHHC spectra deliver detailed information on side chain conformers and secondary structure for interactions between spin pairs. A large number of medium and long-range correlations can be observed in the spectra, and an analysis of the resolved signals reveals that the constraints cover the entire sequence, also including inter-monomer contacts between the two molecules forming the domain-swapped Crh dimer. Dynamic behavior is shown to have an impact on cross signals intensities, as indicated for mobile residues or regions by contacts predicted from the crystal structure, but absent in the spectra. Our work validates strategies involving proton distance measurements for large and complex proteins as the Crh dimer, and confirms the magnetization transfer properties previously described for small molecules in solid protein samples

    Probing magnetic fields in the circumgalactic medium using polarization data from MIGHTEE

    Full text link
    The detection and study of magnetic fields surrounding galaxies is important to understand galaxy evolution since magnetic fields are tracers for dynamical processes in the circumgalactic medium (CGM) and can have a significant impact on the evolution of the CGM. The Faraday rotation measure (RM) of the polarized light of background radio sources passing through the magnetized CGM of intervening galaxies can be used as a tracer for the strength and extent of magnetic fields around galaxies. We use rotation measures observed by the MIGHTEE-POL (MeerKAT International GHz Tiered Extragalactic Exploration POLarisation) survey by MeerKAT in the XMM-LSS and COSMOS fields to investigate the RM around foreground star-forming galaxies. We use spectroscopic catalogs of star-forming and blue cloud galaxies to measure the RM of MIGHTEE-POL sources as a function of the impact parameter from the intervening galaxy. We then repeat this procedure using a deeper galaxy catalog with photometric redshifts. For the spectroscopic star-forming sample we find a redshift-corrected |RM| excess of 5.6 +/- 2.3 rad m-2 which corresponds to a 2.5 sigma significance around galaxies with a median redshift of z = 0.46 for impact parameters below 130 kpc only selecting the intervenor with the smallest impact parameter. Making use of a photometric galaxy catalog and taking into account all intervenors with Mg < -13.6 mag, the signal disappears. We find no indication for a correlation between redshift and RM, nor do we find a connection between the total number of intervenors to the total |RM| . We have presented tentative evidence that the CGM of star-forming galaxies is permeated by coherent magnetic fields within the virial radius. We conclude that mostly bright, star-forming galaxies with impact parameters less than 130 kpc significantly contribute to the RM of the background radio source.Comment: 11 pages, 8 figures, accepted for publication in A&

    Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes

    Get PDF
    In this paper we extract the aerosol microphysical properties for a collection of mineral dust cases measured by multi-wavelength depolarization Raman lidar systems located at the National Technical University of Athens (NTUA, Athens, Greece) and the Andalusian Institute for Earth System Research (IISTA-CEAMA, Granada, Spain). The lidar-based retrievals were carried out with the Spheroidal Inversion eXperiments software tool (SphInX) developed at the University of Potsdam (Germany). The software uses regularized inversion of a two-dimensional enhancement of the Mie model based on the spheroid-particle approximation with the aspect ratio determining the particle shape. The selection of the cases was based on the transport time from the source regions to the measuring sites. The aerosol optical depth as measured by AERONET ranged from 0.27 to 0.54 (at 500 nm) depending on the intensity of each event. Our analysis showed the hourly mean particle linear depolarization ratio and particle lidar ratio values at 532 nm ranging from 11 to 34% and from 42 to 79 sr respectively, depending on the mixing status, the corresponding air mass pathways and their transport time. Cases with shorter transport time showed good agreement in terms of the optical and SphInX-retrieved microphysical properties between Athens and Granada providing a complex refractive index value equal to 1.4 + 0.004i. On the other hand, the results for cases with higher transport time deviated from the aforementioned ones as well as from each other, providing, in particular, an imaginary part of the refractive index ranging from 0.002 to 0.005. Reconstructions of two-dimensional shape-size distributions for each selected layer showed that the dominant effective particle shape was prolate with diverse spherical contributions. The retrieved volume concentrations reflect overall the intensity of the episodes.Spanish Ministry of Sciences, Innovation and Universities through project CGL2016-81092,Spanish Ministry of Education, Culture and Sports through grant FPU14/0368
    corecore