1,061 research outputs found

    Pedological perspective of gully erosion sites within Kendu escarpment-Sondu Miriu Region, West Kenya

    Get PDF
    Gully erosion is a common feature in western Kenya, rendering large expanses of otherwise arable land uncultivable and uninhabitable. Gully erosion in the area was classified into two types: the Awach-type and the Sondu-type. The current study aimed at providing insight into physical and chemical properties of soil that promote soil erosion and determine the gully formation type. Field studies were conducted at 4 sites (3 eroded and 1 non- eroded). Physical (particle size distribution, structure stability, infiltration rate, dispersibility, and soil hardness), and chemical (pH, exchangeable cations, total-C, and total-N) properties of soil samples collected from the sites were analyzed in the laboratory. The results showed alkaline pH; high exchangeable sodium (Na) percentage (ESP); fragile soil structure; high dispersibility; and low infiltration rate are major factors contributing to the formation of Awach-type of gully. In contrast, impermeable top layer of hard crust and coarse-textured soil layers beneath it in addition to high ESP facilitated the formation of Sondu-type of gully. Soils of the eroded sites and the non-eroded sites differed mainly in the ESP, which influenced the soil structure stability, water infiltration rate, and soil dispersibility. Susceptibility of soil layers to erosion depended on the magnitude of ESP and sand content.Keywords: Exchangeable sodium percentage, gully erosion, infiltration rate, Kenya, soil dispersion, soil structure

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Chapter I: Overview

    Get PDF
    The Rangelands Atmosphere-hydrosphere-biosphere Interaction Study Experiment in northeastern Asia (RAISE) ......7

    Broadly tunable, high-power terahertz radiation up to 73 K from a stand-alone Bi2Sr2CaCu2O8+delta mesa

    Get PDF
    High-power, continuous, broadly tunable THz radiation from 0.29 to 1.06 THz, was obtained from the outer current-voltage characteristic (IVC) branch of a single stand-alone mesa of the high-transition temperature T-c superconductor Bi2Sr2CaCu2O8+delta. The particular metallic film structures placed both beneath and atop the mesas resulted in more efficient heat dissipation, higher allowed applied dc voltages, larger IVC loops, wider emission temperature ranges, and much broader emission frequency tunability than obtained previously

    Computed tomography image using sub-terahertz waves generated from a high-T-c superconducting intrinsic Josephson junction oscillator

    Get PDF
    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T-c superconductor Bi2Sr2CaCu2O8+delta was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

    An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models

    Get PDF
    We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity seasons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic-relevant parameters

    Protective Role for the Disulfide Isomerase PDIA3 in Methamphetamine Neurotoxicity

    Get PDF
    Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3) to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations

    AMSR2 Soil Moisture Product Validation

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W) mission. AMSR2 fills the void left by the loss of the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) after almost 10 years. Both missions provide brightness temperature observations that are used to retrieve soil moisture. Merging AMSR-E and AMSR2 will help build a consistent long-term dataset. Before tackling the integration of AMSR-E and AMSR2 it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites. Three products that rely on different algorithms were evaluated; the JAXA Soil Moisture Algorithm (JAXA), the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). Results indicate that overall the SCA has the best performance based upon the metrics considered
    • …
    corecore