1,838 research outputs found
Nitrous oxide in coastal waters
We determined atmospheric and dissolved nitrous oxide (N2O) in the surface waters of the central North Sea, the German Bight, and the Gironde estuary. The mean saturations were 104 ± 1% (central North Sea, September 1991), 101 ± 2% (German Bight, September 1991), 99 ± 1% (German Bight September 1992), and 132% (Gironde estuary, November 1991). To evaluate the contribution of coastal areas and estuaries to the oceanic emissions we assembled a compilation of literature data. We conclude that the mean saturations in coastal regions (with the exception of estuaries and regions with upwelling phenomena) are only slightly higher than in the open ocean. However, when estuarine and coastal upwelling regions are included, a computation of the global oceanic N2O flux indicates that a considerable portion (approximately 60%) of this flux is from coastal regions, mainly due to high emissions from estuaries. We estimate, using two different parameterizations of the air-sea exchange process, an annual global sea-to-air flux of 11–17 Tg N2O. Our results suggest a serious underestimation of the flux from coastal regions in widely used previous estimates
Nitrous oxide emissions from the Arabian Sea
Dissolved and atmospheric nitrous oxide (N2O) were measured on the legs 3 and 5 of the R/V Meteor cruise 32 in the Arabian Sea. A cruise track along 65°E was followed during both the intermonsoon (May 1995) and the southwest (SW) monsoon (July/August 1995) periods. During the second leg the coastal and open ocean upwelling regions off the Arabian Peninsula were also investigated. Mean N2O saturations for the oceanic regions of the Arabian Sea were in the range of 99–103% during the intermonsoon and 103–230% during the SW monsoon. Computed annual emissions of 0.8–1.5 Tg N2O for the Arabian Sea are considerably higher than previous estimates, indicating that the role of upwelling regions, such as the Arabian Sea, may be more important than previously assumed in global budgets of oceanic N2O emissions
The Aegean Sea as a source of atmospheric nitrous oxide and methane
During the EGAMES (Evasion of GAses from the MEditerranean Sea) expedition in July 1993 we determined the concentrations of nitrous oxide and methane in the atmosphere and in the surface waters of the Aegean Sea, the northwestern Levantine Basin, the eastern Ionian Sea and the Amvrakikos Bay. Both gases were found to be supersaturated in all sampled areas. Nitrous oxide was homogeneously distributed with a mean saturation of 105 ± 2%, showing no differences between shelf and open ocean areas, whereas methane saturation values ranged from about 1.2 times (northwestern Levantine Basin) to more than 5 times solubility equilibrium (Amvrakikos Bay estuary). Therefore the Aegean Sea and the adjacent areas were sources of atmospheric nitrous oxide and methane during the study period
Nitrous oxide emissions from the Arabian Sea: A synthesis
We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%
Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis
types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS.Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Research in Microbiology, 2014, Vol. 165, Issue 1, pp. 41 – 49 DOI: 10.1016/j.resmic.2013.10.009Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.BBSRC studentship (C. A. Andreae
Greenhouse gases in cold water filaments in the Arabian Sea during the Southwest Monsoon
The distribution of partial pressure of carbon dioxide and the concentrations of nitrous oxide and methane were investigated in a cold water filament near the coastal upwelling region off Oman at the beginning of the southwest monsoon in 1997. The results suggest that such filaments are regions of intense biogeochemical activity which may affect the marine cycling of climatically relevant trace gase
Water vapor release from biofuel combustion
International audienceWe report on the emission of water vapor from biofuel combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are compared to carbon in the biofuel. Fuel types included hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7 on average, indicating the presence of water that is not chemically bound. This biofuel moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biofuel contributes distinctly to the water vapor in biomass burning emissions, and its influence on meteorology needs to be evaluated
Recommended from our members
Artifacts from manganese reduction in rock samples prepared by focused ion beam (FIB) slicing for X-ray microspectroscopic analysis
Abstract. Manganese (Mn)-rich natural rock coatings, so-called rock varnishes, are discussed controversially regarding their genesis. Biogenic and abiogenic mechanisms, as well as a combination of both, have been proposed to be responsible for the Mn oxidation and deposition process. We conducted scanning transmission X-ray microscopy - near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) measurements to examine the abundance and spatial distribution of the different oxidation states of Mn within these nano- to micrometer thick crusts. Such microanalytical measurements of thin and hard rock crusts require sample preparation with minimal contamination risk. Focused ion beam (FIB) slicing, a well-established technique in geosciences, was used in this study to obtain 100–200 nm thin slices of the samples for X-ray transmission spectroscopy. However, even though this preparation is suitable to investigate element distributions and structures in rock samples, we observed that, using standard parameters, modifications of the Mn oxidation states occur in the surfaces of the FIB slices. Based on our results, the preparation technique likely causes the reduction of Mn4+ to Mn2+/3+. We draw attention to this issue, since FIB slicing, SEM imaging, and other preparation and visualization techniques operating in the keV range are well-established in geosciences, but researchers are often unaware of the potential for reduction of Mn and possibly other elements in the samples’ surface layers
The Partial Visibility Representation Extension Problem
For a graph , a function is called a \emph{bar visibility
representation} of when for each vertex , is a
horizontal line segment (\emph{bar}) and iff there is an
unobstructed, vertical, -wide line of sight between and
. Graphs admitting such representations are well understood (via
simple characterizations) and recognizable in linear time. For a directed graph
, a bar visibility representation of , additionally, puts the bar
strictly below the bar for each directed edge of
. We study a generalization of the recognition problem where a function
defined on a subset of is given and the question is whether
there is a bar visibility representation of with for every . We show that for undirected graphs this problem
together with closely related problems are \NP-complete, but for certain cases
involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study
Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon. <br><br> Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08) in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest. <br><br> This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region) the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s<sup>−1</sup>, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude
- …
