60 research outputs found

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    Get PDF
    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health

    Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    Get PDF
    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation

    Individualized medicine enabled by genomics in Saudi Arabia

    Full text link

    The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis

    No full text
    The mechanism of calcification and its relation to photosynthesis and respiration were studied with Ca2+, pH and O2 microsensors using the scleractinian coral Galaxea fascicularis. Gross photosynthesis (Pg), net photosynthesis (Pn) and dark respiration (DR) were measured on the surface of the coral. Light respiration (LR) was calculated from the difference between Pg and Pn. Pg was about seven times higher than Pn; thus, respiration consumes most of the O2 produced by the algal symbiont's photosynthesis. The respiration rate in light was ca. 12 times higher than in the dark. The coupled Pg and LR caused an intense internal carbon and O2 cycling. The resultant product of this cycle is metabolic energy (ATP). The measured ATP content was about 35% higher in light-incubated colonies than in dark-incubated ones. Direct measurements of Ca2+ and pH were made on the outer surface of the polyp, inside its coelenteron and under the calicoblastic layer. The effects on Ca2+ and pH dynamics of switching on and off the light were followed in these three compartments. Ca2+ concentrations decreased in light on the surface of the polyp and in the coelenteron. They increased when the light was switched off. The opposite effect was observed under the calicoblastic layer. In light, the level of Ca2+ was lower on the polyp surface than in the surrounding seawater, and even lower inside the coelenteron. The concentration of calcium under the calicoblastic layer was about 0.6 mM higher than in the surrounding seawater. Thus Ca2+ can diffuse from seawater to the coelenteron, but metabolic energy is needed for its transport across the calicoblastic layer to the skeleton. The pH under the calicoblastic layer was more alkaline compared with the polyp surface and inside the coelenteron. This rise in pH increased the supersaturation of aragonite from 3.2 in the dark to 25 in the light, and brought about more rapid precipitation of CaCO3. When ruthenium red was added, Ca2+ and pH dynamics were inhibited under the calicoblastic layer. Ruthenium red is a specific inhibitor of Ca-ATPase. The results indicated that Ca-ATPase transports Ca2+ across the calicoblastic layer to the skeleton in exchange for H+. Addition of dichlorophenyldimethylurea completely inhibited photosynthesis. The calcium dynamics under the calicoblastic layer continued; however, the process was less regular. Initial rates were maintained. We conclude that light and not energy generation triggers calcium uptake; however, energy is also needed
    • …
    corecore