71 research outputs found

    On Higher-order Duality in Nondifferentiable Minimax Fractional Programming

    Get PDF
    In this paper, we consider a nondifferentiable minimax fractional programming problem with continuously differentiable functions and formulated two types of higher-order dual models for such optimization problem.Weak, strong and strict converse duality theorems are derived under higherorder generalized invexity

    Projection methods in conic optimization

    Get PDF
    There exist efficient algorithms to project a point onto the intersection of a convex cone and an affine subspace. Those conic projections are in turn the work-horse of a range of algorithms in conic optimization, having a variety of applications in science, finance and engineering. This chapter reviews some of these algorithms, emphasizing the so-called regularization algorithms for linear conic optimization, and applications in polynomial optimization. This is a presentation of the material of several recent research articles; we aim here at clarifying the ideas, presenting them in a general framework, and pointing out important techniques

    Positive Definite Hankel Matrices Using Cholesky Factorization

    No full text
    AbstractReal positive definite Hankel matrices arise in many important applications. They have spectral condition numbers which exponentially increase with their orders. We give a structural algorithm for finding positive definite Hankel matrices using the Cholesky factorization, compute it for orders less than or equal to 30, and compare our result with earlier results.</jats:p
    corecore