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1 Introduction
It is well known that Ekeland’s variational principle (for short, EVP), a very important
result first presented by Ekeland [10] in 1974, is as follows:

Theorem 1.1 (Ekeland [10, 11]) Let X be a complete metric space with a metric d. Let f be
a function from X into (0o, +00] which is proper lower semicontinuous and bounded from
below. Then for u € X and X > 0, there exists v € X such that

(i) fv) <f(u) - rd(u,v),

(i)) f(w)>f(v)—Ad(v,w) for every w # v.

It is well known that the primitive EVP is a powerful tool on many applications in op-
timization, nonlinear analysis, mathematical economy and mathematical programming.
Moreover, EVP is equivalent to the Caristis fixed point theorem [5, 8] and nonconvex min-
imization theorem according to Takahashi [21]. The studies of several forms of Ekeland’s
variational principle for vector valued functions were obtained by many authors, for in-
stance, Nemeth [20], Tammer [22] and Isac [16, 17].

To begin with, let X be a (real) linear space, E be a (real) topological vector space, K be
aconein E and e,f : X — E, be two mappings. Under mild conditions of f and e, Nemeth
[20] got the conclusion that for € > 0 and y € X there exists a z € X such that

() =(f(2) —f() +ee(z~y)) €K,

(i) —(f(w) —f(z) + ee(w — 2)) € K¢; whenever e(w — z) #0,

where K¢ is a complement of K.
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Next, let Y be a topological vector space, K € X, X be areal Banach spaceand f: X — Y.
Tammer [22] showed that under mild assumptions on f and K, for ¢ > 0, there exists an
x € K such that

(i) f(x) —f(x:) +ec® ¢ —D\ {0}, Vx € K,
(i) [lxe — %ol < /5,

(i) £(x) —f(xe) + Ellx —x.[|° ¢ =D\ {0}, Vx € K,
where x is a weakly e-minimal solution of f on K and ¢® € Y\ {0}.

On the other hand, by assuming that (X, d) is a complete metric space, Y is a locally
convex Hausdorff space and C C Y is a normal cone, Isac [16] proved that for ¢ > 0 and
x" € X satisfying mild conditions, there exists A > 0 and " € X such that

(i) f(&) =cfx),
(ii) dx,x") <A,

(iii) f(x) —f () + e/rd(x,x)c® £c 0, Vx € X\ ('},
where ¢® € C\ {0}.

Recently, there have been many new formulation cases of EVP in [1-3, 6, 7]. In 2007,
a generalization of the Ekeland-type variational principle for vector valued functions in the
setting of complete quasi-metric spaces with w-distance was introduced by Ansari [2]. Let
(X, d) be a complete quasi-metric space, C be a proper, closed and convex cone in a locally
convex Hausdorff topological vector space Y. F: X x X — Y satisfies mild conditions. For
every € > 0 and xj € X, there exists ¥ € X such that

(i) F(xp,x) + ew(xg,x)e € —=C,

(if) F(x,x) + ew(x,x)e ¢ —C, for all x € X, x # x,
where e € int C.

By an approach similar to [2], Araya et al. [3] obtained a vectorial version of Ekeland’s
variational principle related to equilibrium problem. In 2008, Al-Homidan et al. [1] es-
tablished Ekeland-type variational principles in the setting of quasi-metric spaces with
a Q-function. Recently, Bednarczuk and Zagrodny [6] introduced an Ekeland-type vec-
tor variational principle for monotonically semicontinuous mappings with perturbations
given by a convex bounded subset of directions multiplied by the distance function, and
they proved EVP for vector-valued mappings by combining topological and set-theoretic
methods. Very recently, Khanh and Quy [19] have proposed a very weak type of general-
ized distances and used it to weaken the assumptions about lower semicontinuity in the
existing versions of Ekeland’s variational principle on the complete metric space: to find
v € X such that, for all x # v

F(v) € F(x) + p(v,x)ko + K,

where K is a convex cone in the Hausdorff locally convex space Y, F: X — 2¥, p is a weak
t-function and &y € (K - cIK).

Motivated by the above mentioned works, we establish a vectorial form of Ekeland-type
variational principle for multivalued bioperator whose domain is a complete metric space
and its range is a subset of a locally convex Hausdorff topological space by using the set
theoretic methods. We also consider Caristi-Kirk fixed point theorem in a more general

setting and our techniques allow us to improve and to extend their results in [2, 6, 7].
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2 Preliminaries

This section provides the preliminary terminology and notation used throughout this pa-
per. Let (X, d) be a complete metric space, Y be a locally convex space (i.e., a linear topo-
logical space with a local base consisting of convex neighborhoods of the origin, see [15])
and K be a closed convex cone in Y. For any x,y € Y we define

x<xy <& y-xek.

Now, we define the concept of a w-distance for a metric space which has been introduced
by Kada et al. [18].

Definition 2.1 Let (X,d) be a metric space. A function w: X x X — [0,00) is called a
w-distance on X if the following conditions are satisfied:
(i) wlx1,x3) < wlwr,x2) + wlxy, x3) for any x,x2,%3 € X;
(ii) for any fixed x € X, w(x, -) is lower semi continuous;
(iii) for any & > 0, there exists § > 0 such that w(xs, ;) <& and w(xs3,x) < § implying

d(xl:xZ) <e.

Definition 2.2 (See [9, 12]) Let f be a function from X to Y. It is said to be
(i) C-bounded below if there exists y € Y such that f(x) € y + C, for all x € X;
(i) (D, C)-lower semicontinuous if for all r € R, {x € X : f(x) € rD — C} closed;
(iti) (D, C)-upper semicontinuous if for all r € R, {x € X : f(x) € rD + C} closed;
(iv) (D, C)-continuous if it is both (D, C)-lower semicontinuous and (D, C)-upper
semicontinuous;
(v) (e, C)-lower semicontinuous if for all r € R, {x € X : f(x) € re — C} closed;
(vi) (e, C)-upper semicontinuous if for all r € R, {x € X : f(x) € re + C} closed;
(vil) (e, C)-continuous if it is both (e, C)-lower semicontinuous and (e, C)-upper
semicontinuous;
(vili) C-lower semicontinuous ifforally e Y, {x € X : f(x) € y — C} closed;
(ix) C-upper semicontinuous ifforally e Y, {x € X : f(x) € y + C} closed;
(x) C-continuous if it is both C-lower semicontinuous and C-upper semicontinuous.

Remark 2.3 It is easy to see that the C-lower (respectively upper) semicontinuity of f
implies the (e, C)-lower (respectively upper) semicontinuity.

Definition 2.4 (Holmes [15]) Let X be a linear topological space over the field R.
(1) A sequence {x,} C X is bounded if A,.x, — 6 whenever A, — 0 in R.
(2) Aset A C X isbounded if every sequence in A is bounded.

Let C be a convex cone in a linear topological space Y with intC # ¢ and D a convex
subset of C such that 0 ¢ c/(D + C). In order to show the main results, let us give the
following definition.

Definition 2.5 A generalized nonlinear scalarization function is defined by

Epo)(z):=inf{reR:zerD-C} VzeY.
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Remark 2.6 If D = {e} with e € int C, then £ ¢) Definition 2.5 reduces to the definition of

the Gerstewitz function [14]
&(2):=inflreR:zere-C} VzeY.

Lemma 2.7 Forr € R, weset P, = rD — C. Then the following hold:
(i) Ifz € P, forsomer e R, z € P, foreach > r.
(ii) Foreach z € Y, there exists a real number ) such that z ¢ P,
(iii) Letze Y. Ifz & P, for somer e R, z & P, foreach p <r.

Proof (i) Let z € P, for some r € R and p > r. We note that
uD—-z=(u-rD+rD-zeC+CCC.
This implies z € P,,.

(ii) Assume there exists z € Y such that for all A € R, z ¢ P,. From (i), we have z e AD-C
for all A € R. Then we see that

—tD-zeC and (1-¢)D-zeC forsometeR.
Note that

(-tD-z)-(1-t)D-z)eC+CCC.
Since D is convex, we have

0etD+(1-t)D+C<D+C,
which is a contradiction to 0 ¢ c/(D + C).

(iii) Let z € Y and if z ¢ P, for some r € R. Assume that for some u <, z € P,. From (i),
we have z € P,, a contradiction. O
Proposition 2.8 The function & : Y — R is well defined.

Proof Forany z € Y, define

K:={reR:zerD-C}.

It is sufficient to show that K is bounded from below.

Assume that for each r € R, there exists / € R such that /< rand z € [D - C.

By Lemma 2.7 (ii), there exists i € R such that z ¢ uD - C.

By Lemma 2.7 (iii), we have z ¢ aD — C for each « < i, a contradiction. Then K is
bounded from below. O

Let us recall the basic set-theoretical concepts and tools which are used in the sequel.
Let X be a nonempty set and s C X x X a relation. By x s y we mean that (x,y) € s and we
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write x s~ y if and only if there are finite elements 1, ...,x, € X such that
X=X1, X1 8X25 vovy X1 S Xy Xpp =Y.

The relation s is said to be the transitive closure of s, and s = s~ if s is transitive. We say
that the element x € X is maximal with respect to a relation s C X x X (i.e., x is s-maximal)

if for every y € X,
xsy = ys x.

Definition 2.9 (See [13]) A set X with a relation s C X x X is countably orderable with
respect to s if for every nonempty subset W C X there exists a well-ordered relation p on
W such that

vuw=vs w foreveryv,we W,v#w

implies that W is at most countable.

Theorem 2.10 (See [13]) Let X be a countably orderable set by a relation s C X x X. As-
sume that for any sequence (x;) C X satisfying

x;Sx1 forallie N
there are a subsequence (x;,) C (x;) and an element x such that
xy, sx  forallkeN.

Then an s -maximal element of X exists.

Moreover, if s is transitive, then there exists an s-maximal element of X.

3 Main theorem
In this section, we will present the following vectorial form of an equilibrium version of

vector Ekeland’s principle in setting complete metric spaces and w-distance.

Theorem 3.1 Let X be a complete metric space, w : X X X — [0,00) be a w-distance on X,
Y be a locally convex space, C be a closed and convex cone in Y and D be a closed convex
and bounded subset of C such that 0 & cl(D+ C). Let F : X x X — Y be a function satisfying
the following conditions:
(i) F(x,x)=0 forallx € X;

(ii) F(x,y) + F(y,2) € F(x,2z) + C for every x,y,z € X;

(iii) for each x € X, the function F(x,-) : X — Y is (D,C)-lower semicontinuous;

(iv) for each fixed x € X, F(x,-): X — Y is C-bounded below.
Then for every xy € X, there exists X € X such that

(i) F(x0,%) + wlxo,x)D < ~C;

(ii) F(®,x)+w(x,x)D ¢ —C for all x # %.
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Proof Let r C X x X be a relation defined as follows: For any x,y € X,
xry < F(xy) +olxy)Dc-C.
We will first show that r is transitive. Suppose that u; r u; and u, r us. Thus, we have

F(ur, un) + o(uy, up)D € —C  and

F(uy, us) + w(uy, us)D < —C.
This implies that

F(uy, up) + Fuy, u3) + o(uy, uy)D + w(uy, uz)D € —C. (3.1)
By assumption (ii), we obtain

F(uy,u3) € F(uy,up) + F(up, u3) - C. (3.2)
Therefore, by the convexity of D, we have

(w(u1,u2) + (2, u3))D = (1, u2)D + w(ua, u3)D.

Indeed, if w(uq, us) + w(uz, u3) = 0, we are done. If w(uy, us) + w(uy, u3) > 0, for dy,d, € D,

we have

(i1, U) (i, usz)

dy eD.
w(u1, uy) + (U, us) ! w(u1, uy) + (U, uz) 2

So, we have
w(u, u2)dy + ot uz)dy € (w(u1, up) + w(uz, u3))D.
Hence w(uy, up)D + w(uy, usz)D S (w(uy, us) + w(uy, us))D, which implies that (w(u, us) +
w(ua, u3))D = w(uy, uz)D + w(uz, uz)D.
By the definition of w-distance, w(u1, u3) < w(u, ) + w(us, us). Therefore, there is a real

number ¢ > 0 such that

(U, u3)D = w(uy, ur)D + w(uy, u3)D — D

- w(ul, L£2)D + a)(uz, M3)D -C. (33)
From (3.1), (3.2) and (3.3), we have
F(u1,u3) + o(uy, u3)D < -C.

This implies that u;rus.
We define S: X — 2% by

Slx) = {yeX:F(x,y) +w(x,y)D C —C} forallx € X.

Page60of 11
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It is easy to see that x € S(x), and so S(x) is nonempty for all x € X. By assumption (iii), we
note that S(x) is a closed set for all x € X. We now show that S(x) is a countably orderable
set by a relation r C X x X.

Let

V(x):= inf F(x,5)),
(x) yes(x)g(D,C)( *))

where §p,c)(z) :=inf{re R:zerD-C}forallze Y.
Let W be any nonempty subset of A which is well ordered by a relation s satisfying

usv = ur v foreveryu,ve W, u#v.

Then, for any u,v € W with u # v, we note that

usv=ur v=urv and S()CSW)

because r is transitive. Since u r v, u # v, thus F(u,v) + o(u,v)D C —C, which implies that
&p,0)(F(u,v)) < —w(u,v) < 0. Moreover,

V() = inf &pc)(F(u,y))
yeS(u)

< inf F(u,
_yéISI(V)S(D,C)( (u,y))

< yilg(fv)(é(D,C) (F(u,v)) + &,y (F(v,%)))

= &p,0)(F(w,v)) + inf &p,c)(F(v,))
yes)
inf F(v,
< inf £n,0)(F(r,9))
= V().
Thus V(W) C R is well ordered by the relation “<” and hence V(W) is at most countable.
Since V is one-to-one mapping on W, W is at most countable.

For any x € X, we let (y,,) C S(x) with y,, r y,,1 for all n € N. We next show that there is
an element y, such that y, r yo for all » € N.

In case Yy, = Yms1 = Ymso = - - - for some m € N, we can put ¥ := y,, and so we have done.
Then, it is enough to consider the case Zf’fl o¥iyin) > 0. Since y,7y,,1 for each n € N, we
obtain

F(ynxyn-d) + w(ynxym—l)D g _C- (34)

From (3.4) and assumption (ii), we observe that

F(y1,y2) € FO1Yme) — F2,93) —F3,94) = - = FWms Y1) + C
C F(y1,ymn) + (0(2,93)D + C) + (0(y3,94)D + C) + - -+
+ (@Wm ym1)D+C) + C

m

C FO1,Yms1) + Z(w(%',ym)l)) +C,

i=2


http://www.fixedpointtheoryandapplications.com/content/2012/1/127

Sitthithakerngkiet and Plubtieng Fixed Point Theory and Applications 2012, 2012:127 Page8of 11
http://www.fixedpointtheoryandapplications.com/content/2012/1/127

for all m € N. Since F is C-bounded below, there exists z € Y such that

F(yl,yz) €czZ+ C+ Z(a)(y,»,ym)D). (35)

i=2

By the convexity of D, we have

Z(w()/hym)D) = (Z w()’i;)’i+1))D (3.6)

i=1 i=1

for any m € N. Therefore, it follows from (3.5) and (3.6) that

F(y1,92)€z+C+ (Zw(yi,y,-ﬂ))D.

i=2

Since 0 ¢ cl(D + C), by the Separation theorem, there exists f € Y~ such that
(f$,0> < inf{(f*,d + c),Vd eD,Vce C}.

This implies that 0 < & < {f",d+¢) = (f ,d) + {f , ¢) for some & > 0,and foranyd € D, c € C.
Hence infyep{f ,d) >0 and {f ,c) > 0 for any ¢ € C. Hence, for each m € N, we have

m

(7 For) ={2) + 1)+ Y byl )

i=2
for some ¢ € C and d € D. Since (f*, ¢) > 0 for any c € C, it follows that

m

(" FOny)) = (f ,2) + Zw(yi,ym)‘iirellf)(f*,d).

i=2

Since infzep(f’,d) > 0, we have that Y ", @(y;,7:.1) is bounded above by %
Moreover, (31", ®(y;,yi+1)) is a monotone sequence then the series > ;- w(y;,:41) con-
verges. This implies that lim;_, . @(¥;,¥is1) = 0. It is easy to see that (y,) is a Cauchy se-
quence in S(x). By the completeness of X and closedness of S(x), (y,) converges to a certain
¥o € S(x). Since r is transitive and y,, 7 y,,1, then y, r y,, for all m > n, and so y, r yo. This
entails that S(x) satisfies the condition in Theorem 2.10. Now, the proof includes applying
Theorem 2.10 to show that S(x) has an r-maximal element X € S(x). Let us observe that
for x € X, any r-maximal element of S(x) is an 7-maximal element of X. Hence, (i) holds
for x. Finally, we show that x satisfies (ii). Assume that x r z for some z # x. Since r is transi-
tive and X is r-maximal, z r x. Consequently, V() > V(z) and V(z) > V (), a contradiction.
Hence x satisfies (ii). O

Remark 3.2 We see in the proof that we do not use the symmetry condition of the metric.
So, the conclusion in Theorem 3.1 still holds if we replace the word “metric space” with
“quasi-metric space”.

By setting D = {ge} for all ¢ > 0 in Theorem 3.1, we obtain the following Corollary which
is proven by Ansari [2].
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Corollary 3.3 (Theorem 3.1 in [2]) Let (X, d) be a complete quasi-metric space, » : X x
X — [0,00) a w-distance on X, Y be a locally convex Hausdorf topological vector space, C
be a proper, closed and convex cone in Y with apex at origin and intC # (), and e Y be a
fixed vector such that e € intC. Let F : X x X — Y be a function satisfying the following:
(i) F(x,x)=0, forall x € X;
(ii) F(x,y) + F(y,2) € F(x,z) + C forall x,y,z € X;
(iii) for each fixed x € X, the function F(x,-): X — Y is (e, C)-lower semicontinuous and
C-bounded below.

Then for every € > 0 and for every xo € X, there exists x € X such that

(a) F(xg,x)+ew(xy,x)e € —C,

(b) F(x,x) + ew(x,x)e ¢ —C, forallx € X, x #x.

If F(x,y) = f(y) — f(x), where f : X — R is lower semicontinuous and bounded below,
then we have the following result.

Corollary 3.4 Let X be a complete metric space, w : X x X — [0, 00) be a w-distance on X,
Y be alocally convex space, C be a closed and convex cone in Y and D be a closed convex and
bounded subset of C such that 0 & cl(D + C). Let f : X — Y be (D,C)-lower semicontinuous
and C-bounded below. Then for every xo € X there exists x € X such that

(i) f(x) + w(xo,%)D < f(x0) - C;

(ii) f(x) + w(xx)D € f(x) - C for all x #x.

We obtain that Corollary 3.4 is the extension of the following.

Corollary 3.5 Let X be a complete metric space, w : X x X — [0, 00) be a w-distance on X,
Y be alocally convex space, C be a closed and convex cone in Y and D be a closed convex and
bounded subset of C such that 0 & cl(D + C). Let f : X — Y be (D,C)-lower semicontinuous
and C-bounded below. Then for every xy € X there exists x € X such that

() (F(x0) — C) N (F®) + wlxo, D) # %

(ii) (f(x) — C)N(f(x) + w(x,x)D) = @ for all x #x.

Proof By all conditions of Corollary 3.4, we have for every xy € X there exists ¥ € X such
that

S &) + w(xo,%)D C f(x0) — C, (3.7)
fx) +w@xx)DZ f(x) - C forallx #%. (3.8)
From 3.7, we have (i) holds.

If (ii) were not satisfied, we would have (f(x) — C) N (f(x) + w(x,x)D) # @ for some x # x.
Then there are ¢; € C and d; € D such that

f&x) =f(x) + wx, x)d1 + 1. (3.9)
Since 0 ¢ c/(D + C), by the Separation theorem, there exists y° € Y~ such that 0 < ¢ <

(y,d+c)=(y,d)+(y,c) for some ¢ >0, d € D and ¢ € C. Hence infyep(y’,d) > 0 and
(y',c) > 0 foranyce C.
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From (3.9), we obtain that

[ @) =y f @) + wE)ds + 1) >y, f ).

Using the same method of (3.9), we conclude that (y f(x)) < (y f(x)), a contradiction. Con-
sequently (ii) holds O

If weset Y =R, C=[0,00) and D = {¢} for ¢ > 0 in Theorem 3.1, we have the following
result which is a well-known Ekeland’s variational principle in a more general setting.

Corollary 3.6 Let X be a complete metric space, w : X x X — [0,00) be a w-distance on
X, f: X x X — R be a function satisfying the following conditions:
(i) Flx,x)=0 forallx € X;
(ii) F(x,y) + F(y,2) > F(x,z) for every x,y,z € X;
(iii) for each x € X the function F(x,-) : X > R is lower semicontinuous and bounded
below.

Then for every xo € X and ¢ > 0, there exists x € X such that

(i) F(xo,%) + ew(xg,%) < 0;

(ii) F(x,x) + ew(Xx,x) > 0 for all x # .

Remark 3.7 By setting w = d and F(x,y) = f(y) — f(x), where f : X — R is lower semicon-
tinuous and bounded below in Corollary 3.6, we obtain Theorem 1.1 proven by Ekeland
10, 11].

The following theorem provides the equivalence between the equilibrium version of
Ekeland-type variational principle, the equilibrium problem, Caristi-Kirk type fixed point
theorem and Oettli and Théra type theorem

Theorem 3.8 Let X be a complete metric space, w : X x X — [0,00) be a w-distance on X,
Y be a locally convex space, C be a closed and convex cone in Y and D be a closed convex
and bounded subset of C. Let T : X — 2% and F : X x X — Y be a function satisfying the
following conditions:
(i) F(x,x)=0 forallx € X;
(ii) F(x,y) + F(y,2z) € F(x,z) + C for every x,y,z € X;
(iii) for each x € X, the function F(x,-): X — Y is (D, C)-lower semicontinuous;
(iv) for each fixed x € X, F(x,-) :x — Y is C-bounded below;
(v) foreach x € X, there is y € X such that y € Tx and F(x,y) + w(x,y)D € -C.
Then T has at least one fixed point, i.e., there exists x € X such that x € Tx.

Proof By assumption (i)-(iv) applied to Theorem 3.1, there exists ¥ € X such that
F(%,z) + w(x,z2) D¢ —C forallz #%.

On the other hand by assumption (v), there exists y € T'(x) such that
F(x,y) + w(x,y)D < -C.

Then we see that x = y, and so x € T'(¥), that is, T has at least one fixed point. O
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Remark 3.9 We set F(x,y) = f(y) — f(x), D = {¢}, € > 0 and replace w-distance by d-
distance in Theorem 3.8, we obtain Theorem 3.1 in [3] and Theorem 4.1 in [4] (vectorial

Caristi-Kirk fixed point theorem).
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