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Abstract

Hankel operators and Hankel transforms are required in a number of applications.
This article proves a number of theorems that efficiently and accurately approximates
a function using Hankel transforms and Hankel sum. A characterization of the Hankel
matrix sequences and Hankel matrix of semi-periodic and almost periodic sequences
are also given. This article also introduces the concepts of almost periodic Hankel
matrix, multiplicative Hankel matrix and normal almost periodic Hankel matrix.
Applications to trigonometric sequences are given.
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1 Introduction
A Hankel matrix is a square matrix (finite or infinite), that is constant on each diagonal

orthogonal to the main diagonal. Its (n, m)th entry is a function of n + m. The most

famous Hankel matrix is the Hilbert matrix, whose (n, m)th entry is 1/(n + m - 1), n,

m = 1, 2,.... For basic properties of the Hankel matrix, we refer to Horn and Johnson [1]

and Iohvidov [2]. Interesting properties of the Hilbert matrix are discussed by Choi [3].

Hankel operators can be defined in several different ways and they admit different

understanding. Such variety is important in applications, since in each case we can

choose an understanding that is most suitable for the problem considered. The defini-

tion of Hankel operators will be given in the next section. For Hankel operators and

their applications to approximation theory, prediction theory, and linear system theory,

we refer to [4]. Relevence of the Hankel matrix to optimization problem can be found in

[5-8]. Nehari [9] published the first article on general Hankel operators and its relation

to Fourier coefficients. Beylkin and Monzón [10] have introduced approximation of a

function by exponential sum using results of the Hankel matrix. Applications of Hankel

transform can be found in circular symmetry, analysis of central potential scattering

[11], solenoidal magnetic field [12], and medical computed tomography [13]. Hankel

operators have many applications in, for example, control theory see [4] and the refer-

ences therein.

In Section 2, we study order of approximation of a function by the nth Fourier series

partial sum of a Hankel matrix transform. Section 3 is devoted to the characterization of

Hankel matrix which induces an operator that maps one convergent sequence to another

having the same or different limits. This section also contains characterization of Hankel

matrix sequences, Hankel matrix semi-periodic sequences and almost periodic sequences.

In Section 4, concepts of almost periodic Hankel matrix, multiplicative Hankel matrix,
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normal almost periodic Hankel matrix and related methods of summability are intro-

duced. Applications to trigonometric sequences are given.

2 Approximation by Hankel matrix
Let H be an infinite Hankel matrix, that is,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 · · · hi · · ·
h2 h3 h4 · · · hi+1 · · ·
...

...
...

. . .
. . .

...
hi hi+1 · · · · · · h2i−1 · · ·
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦
. (1)

An operator T mapping x = (ξ0, ξ1, ξ2,..., ξk ...) to y = (h0, h1, h2, h3,..., hk ...) where

ηk =
∞∑
n=0

hn+kξn, k = 0, 1, 2, 3.... (2)

is called the operator induced by the Hankel matrix H. hm is called the Hankel

matrix mean or transform of the sequence {ξn}.

Let X be a function space, say Hp be the classical dyadic Hardy space or Bα
ip the clas-

sical Besov space. Let Sn(x) = 1
2ao +

∑n
k=1 (ak cos kx + bk sin kx) be nth partial sum of

the Fourier series of f Î X.

Definition 2.1 A Hankel matrix is called convex if �2
k ≥ 0 , where Δk = hn+k - hn+k+1

and �2
k = �k − �k+1 .

We study here the order of ∥f - hm∥X for X = Hp and X = Bα
ip , 0 <a < 1. More pre-

cisely, we can prove the following theorem:

Theorem 2.2 Let f(x) be periodic with period 2π, f(x) Î H2(-π, π) and let the Fourier

series associated with f(x) be 1
2ao +

∑∞
k=1 (ak cos kx + bk sin kx) . Let

σn(f , x) =
∑n

k=0 hn+kSk(x)and σn(f , x) =
∑n

k=0 hn+kSk(x) , where hn+k is a convex Hankel

matrix. Then sn(f, x) - f(x) = O(ω(δ,t)).

Proof. It can be verified that σn(f , x) − f (x) = 1
π

∫ π

0 ϕx(t)Kn(t)dt , where �x(t) = f(x +

t) + f(x - t) - 2f(x) and Kn(t) = 1
2 +

∑n
k=1 hn+k cos kt then

σn(f , x) − f (x) =
1
π

δ∫
0

ϕx(t)Kn(t)dt +
1
π

π∫
δ

ϕx(t)Kn(t)dt (3)

Let Mn(δ) = max
δ≤t≤π

∣∣Kn(t)
∣∣ , for all δ > 0. It can be checked that there exists a decreas-

ing function in [0, π] such that
∣∣Kn(t)

∣∣ ≤ K∗
n(t) , and

∫ π

0

∣∣K∗
n(t)

∣∣ dt < M . Infact, it is

not difficult to show that Kn(t) itself satisfies these condition,
∫ π

0

∣∣Kn(t)
∣∣ dt < M . We

have ∣∣∣∣∣∣
δ∫

0

ϕx(t)Kn(t)dt

∣∣∣∣∣∣ ≤
δ∫

0

∣∣ϕx(t)
∣∣K∗

n(t)dt =
[
φx(t)K∗

n(t)
]δ

0 +

δ∫
0

φx(t)d
[−K∗

n(t)
]
,
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where φx(t) =
t∫
0

∣∣ϕx(u)
∣∣ du = O

(
ω(δ, t)

)
. This gives us

δ∫
0

ϕx(t)Kn(t)dt = O
(
ω(δ, t)

)
, for δ > 0. (4)

So we have∣∣∣∣∣∣
π∫

δ

ϕx(t)Kn(t)dt

∣∣∣∣∣∣ ≤ Mn(δ) = max
δ≤t≤π

∣∣Kn(t)
∣∣ ≤ 1

sin2 δ
2

n−1∑
k=0

∣∣�2
k

∣∣ + |�k| .

The following relations hold (n + 1)|Δv| <M1 and
∑n−1

k=0

∣∣�2
nk

∣∣ → 0 as n ® ∞. In

view of these relations,
∣∣∫ π

δ
ϕn(t)Kn(t)dt

∣∣ = O(1) . Therefore, from 4 we have sn(f, x) - f

(x) = O(w(δ, t).

Corollary 2.3 If f ∈ Bα
ip, 0 < α < 1 , then σn(x) − f (x) = O

( 1
nα

)
Proof. For f ∈ Bα

ip , we have O(ω(δ,t) = O(δa) choosing δ = 1
n , we get sn(f, x) - f(x) =

O(n-a) for all 0 <a < 1.

3 Hankel matrix operators
In this section, we consider the theory of infinite Hankel matrix transformations and

summa-bility. A sequence x = {ξ0, ξ1,..., ξk,...} is called summable with respect to a Han-

kel matrix H if hn ® s, where ηn =
∑∞

k=0 hn+kξk . See for example, [14]. H is called reg-

ular if hn ® s wherever ξk ® s.

Theorem 3.1 A Hankel matrix H = {hk,n} is regular if and only if

(i) lim
n→∞ hn+k = 0

(ii) lim
n→∞

∞∑
k=1

hn+k = 1

(iii) sup
n

∞∑
k=1

|hn+k| ≤ M

Proof. Let conditions (i)-(iii) be satisfied and ξk ® s. Condition (iii) implies that for

each n Î N, the series Σ|hn+k| converges. Since∑
hn+kξk =

∑
hn+k (ξk − s) + s

∑
hn+k,

it follows that Σhn+k (ξk - s) and s Σhn+k converges for every n. Hence, by (i)∣∣∣∣∣
∞∑
k=1

hn+kεk

∣∣∣∣∣ ≤
p∑

k=1

|hn+kεk| +
∞∑

k=p+1

|hn+kεk| ≤ sup
k

|εk|
p∑

k=1

|hn+k| +M sup
k>p

|εk| .

for any p Î N, where εk = ξk - s. This implies that

lim sup
n

∣∣∣∑ hn+kεk
∣∣∣ ≤ M sup

k>p
|εk| .

So, letting p ® ∞, we find that Σhn+k(ξk - s) ® 0, which implies hn ® s.
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To prove the converse, let Hankel matrix H be regular. Taking x = (ξ1, ξ2,..., ξk,...) =

ek, we see that |Σhn+k| = 1 implies (i). Taking x = (1, 1,... 1,...) = e, we get

lim
n→∞

∑∞
k=1

hn+kek = 1 , that is, (ii) holds. For (iii), since H is regular and if we apply the

Banach-Steinhan theorem and closed graph theorem, we have

sup
n

∣∣∣∑ hn+kξk
∣∣∣ ≤ ‖H‖ sup

k
|ξk| , (5)

for all ξ. Now, if we choose any n Î N and r Î N and define ξk = |hn+k|/kn+k for 1 ≤

k ≤ r, and ξk = 0 for k >r, then from (5), we have
∑r

k=1 |hn+k| ≤ ‖H‖ . Since this

inequality holds for every n and letting r ® ∞ therefore (iii) is satisfied.

The following theorem can be proved similarly.

Theorem 3.2 If {ξk} is convergent, then {hn} is convergent if and only if

(i) sup
n

∑∞
k=1 |hn+k| < ∞,

(ii) for each p Î N, there exists lim
n

∑∞
k=p hn+k = hp .

Moreover, if (i) and (ii) hold and ξk ® s as k ® ∞, then

lim
n

∞∑
k=1

hn+kξk = sh1 +
∞∑
k=1

(hk − hk+1) (ξk − s).

4 Hankel matrix transform of trigonometric sequences
First, we prove the following characterization of a Hankel matrix transform conver-

gence of a trigonometric sequence.

Theorem 4.1 Let f(x) be a function integrable in the sense of Lebesgue in [0, 2π] and

periodic with period 2π. Let 1
2a0 +

∑∞
n=1 (an cos nx + bn sin nx) be the Fourier series of f

(x) and let
∑∞

n=1 (bn cos nx − an sin nx) be its conjugate series. Let H = {hn+k} be a Han-

kel matrix. Then the Hankel matrix transform of the sequence∑∞
n=1 hn+kk (bk cos kx − ak sin kx) , converges to π-1D(x) if and only if

lim
n→∞

n∑
k=0

hn+k cos kt = 0 (6)

in every 0 <t ≤ π, where ak and bk are respectively, cosine and sine Fourier coefficients

of a function of bounded variation on [0, 2π], and D(x) = f(x + 0) - f(x - 0).

Proof. Since

n∑
k=0

hn+kk (bk cos kx − ak sin kx) =
n∑

k=0

hn+k 1
π

π∫
0

ϕx(t)k sin kt dt

= π−1D(x)
n∑

k=0

hn+k + π−1

π∫
0

n∑
k=0

hn+k cos kt dϕx(t)

= π−1D(x) + π−1

π∫
0

Kn(t)dϕx(t),
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where �x(t) = �x(f;t) = f(x + t) - f(x - t) and Kn(t) =
∑n

k=0 hn+k cos kt , we have to

show that (6) holds. Therefore for every function of bounded variation on [0, 2π] and

for every x in [0, 2,π]

lim
n→∞

π∫
0

Kn(t)dϕx(t) = 0 (7)

and conversely. Condition (7) is equivalent to the following condition:

lim
n→∞

π∫
δ

Kn(t)dϕx(t) = 0 (8)

for every function of bounded variation f on [0, 2π], for every x in [0, 2π], and every

0 <δ ≤ π. Suppose (7) holds. If f is a function of bounded variation on [0, 2π], and x Î
[0, 2π], then for every 0 <δ ≤ π, we can construct a function of bounded variation g on

[0, 2π] such that g is constant in [x - δ, x + δ] and g coincides with f elsewhere. Since

π∫
δ

Kn(t)dϕx(f ; t) =

π∫
0

Kn(t)dϕx(g; t)

and the right-hand integral tends to 0 as n ® ∞ by (7) so does the left integral. Thus

(7) implies (8). Suppose now (8) holds. If f is a function of bounded variation on [0,

2π] and x Î [0, 2π], given any ε > 0, then there exists a δ > 0 such that

δ∫
0

∣∣dϕx(t)
∣∣ < ε/2M, (9)

where M is the positive constant such that

n∑
k=0

|hn+k| ≤ M and so

∣∣∣∣∣∣
δ∫

0

Kn(t)dϕn(t)

∣∣∣∣∣∣ < ε/2.

Since (8) holds, there exists an n0 = n0(ε) such that for n ≥ n0,∣∣∣∣∣∣
π∫

δ

Kn(t)dϕx(t)

∣∣∣∣∣∣ < ε/2. (10)

Combining (9) and (10), we have for n ≥ n0,
∣∣∫ π

0 Kn(t)dϕx(t)
∣∣ < ε , that is, (7) holds.

Thus, (8) implies (7). By a well known theorem on the weak convergence of sequences

in the Banach space of all continuous functions defined in a finite closed interval, it

follows that (8) holds if and only if |Kn(t)| ≤ K for all n and for all t Î [δ,π] and (6)

holds. Since |Kn(t)| ≤ K for all n and or all t Î [δ,π] is automatically satised by∑n
k=0 |hn+k| ≤ M independently of n, it follows that, (8) holds if and only if (6) holds.

This ends the proof.

Vermes [15] proved that an arbitrary matrix H sums every periodic sequence if and

only if for every rational t,
∑∞

k=0
hn+ke

2π ikt converges and lim
n→∞

∑∞
k=0 hn+ke

2π ikt exists.
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Definition 4.2 A sequence {xk} is called semi-periodic if for every ε > 0, there exists

an integer r such that |xk - xk+rn| <ε for every n and k.

Let P be the set of all periodic sequences of complex numbers and SP is the closure

of P. Berg et al. [16] proved that SP is the set of all semi-periodic sequences. P is a lin-

ear subspace of ℓ∞.

Theorem 4.3 For an infinite Hankel matrix H = {hn+k}, the H transform of every

semi-periodic sequence is convergent if and only if

(i) ‖H‖ = sup
n≥0

∑∞
k=0

hn+k < ∞

(ii) lim
n→∞

∑∞
k=0 hn+ke

2π ikt exists for all rational t.

Proof. If {xk} Î SP, then for any ε > 0, there exists a {yk} Î P such that ∥{xk} -{yk}∥∞ <ε.

If {yk} is of period r, then there exist r constants l1,..., lr such that

r∑
μ=1

e2π ikμ/rλμ = yk, k = 0, ..., r − 1

so that∣∣∣∣∣
∞∑
k=0

hm+kxk −
∞∑
k=0

hn+kyk

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
k=0

(hm+k − hn+k) (xk − yk)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k=0

(hm+k − hn+k)

(
r∑

k=0

e2π ikμ/rλμ

)∣∣∣∣∣
≤ 2 ‖H‖ ε + ε

for n and m sufficient large. Hence, lim
n→∞

∞∑
k=0

hn+kxk exists. The converse can be estab-

lished as in Berg et al. [16], and (ii) is immediate since e2πikt is periodic when t is

rational.

Definition 4.4 A sequence {xk} of complex numbers is called almost periodic if to any

ε > 0, there corresponds an integer N = N(ε) > 0 such that, among any N consecutive

integers, there exists an integer r with property |xk - xk+r| <ε for all k. Let AP be the set

of all almost periodic sequences of complex numbers.

AP is a linear subspace of ℓ∞ and P ⊂ P̄ = SP ⊂ AP ⊂ �∞ . For t irrational {e2πikt} is

almost periodic but not semi-periodic.

Theorem 4.5 For infinite Hankel matrix H = {hn+k}, the H transform of an almost

periodic sequences is convergent if and only if

(i) ‖H‖ = supn≥0

∞∑
k=0

|hn+k| < ∞

(ii) lim
n→∞

∑∞
k=0 hn+ke

2π ikt exist for all t.

Proof. Let
∑n

k=0 hn+kxk → s as ® ∞ for every almost periodic sequence {xk}. Since for

each t, {e2πikt} is almost periodic therefore (ii) holds. It can be checked that if y Î ℓ1,
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then
∥∥y1∥∥�1

is equal to the norm of y on the Banach space of almost periodic sequences

denoted by ∥y∥AP. For each fixed n, first

yN(x) =
N∑
k=0

hn+kxk,

where x Î AP, yN(x) Î AP and lim
N→∞

yN(x) exists for each x Î AP. By the uniform

bounded principle,

∥∥yn∥∥AP =
∥∥yn∥∥�1

=
N∑
1

|hn+k| ≤ Mn < ∞.

For each N so that
∑∞

k=0 |hn+k| < ∞ for each n. If we put zn(x) =
∑∞

k=0 hn+kxk , x Î

AP, then zn Î AP and lim
n→∞ zn(x) exists for each x Î AP. Applying once more the uni-

form boundedness principle, we get

‖H‖ = sup
n≥0

∞∑
k=0

|hn+k| < ∞.

Thus (i) holds. To prove the sufficiency of conditions (i) and (ii), we note that if x =

{xk} Î AP, then there exists a sequence
{∑N

j=0 bje
2π iλjk

}
∈ AP , such that for all

k
∣∣∣xk − ∑N

j=0 bje
2π iλjk

∣∣∣ < ε . Now

∣∣∣∣∣
∞∑
k=0

hm+kxk −
∞∑
k=0

hn+kxk

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
k=0

(hm,k − hn+k)(xk −
N∑
j=0

bje
2π iλjk)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∑
k=0

(hm+k − hn+k)
N∑
j=0

bje2π iλjk

∣∣∣∣∣∣
≤ 2 ‖H‖ ε + ε

for m and n sufficiently large. Thus, lim
n→∞

∑∞
k=0 hn+kxk exists.

Definition 4.6 A Hankel matrix H = {hn+k} is called a normal almost periodic if (i)

lim
n→∞

∑∞
k=0 hn+k = 1and (ii) lim

n→∞
∑∞

k=0 hn+ke
2π ikt = 0for all t Î (0, 1).

Every normal almost periodic Hankel matrix is normal.

Theorem 4.7 Let H = {hn+k} be a Hankel matrix with ∥H∥ < ∞. Then for every func-

tion of bounded variation f on [0, 2π] and for every x Î [0, 2π], the Hankel transform

of the sequence {Ckeikx} is convergent to (2π)-1D(x) if and only if H is a normal almost

periodic matrix, where D(x) = F(x + 0) - F(x - 0).

Proof. The condition is necessary, for if we choose F : F(t) = 2π for 0 <t ≤ 2π and F

(0) = 0, then Ck = 1 for all k, D(0) = 2π and D(x) = 0 for 0 <x < 2π so that

lim
k→∞

∑∞
k=0 hn+ke

2π ikx = 0 for all x Î (0, 1) and lim
k→∞

∑∞
k=0 hn+k = 1 . To prove the con-

verse, let H be a normal almost periodic matrix. Then

Al-Homidan Journal of Inequalities and Applications 2012, 2012:92
http://www.journalofinequalitiesandapplications.com/content/2012/1/92

Page 7 of 9



∞∑
k=0

hn+kCke
ikx =

∞∑
k=0

hn+k
1
2π

∞∑
j=0

D(xj)eik(x−xj)(x − xj)

+ (2π)−1

2π∫
0

Kn(
x − t
2π

)dFc(t),

where kn(t) =
∑∞

k=0 hn+ke
2π ikt , {xj} are the points of jump of F in [0, 2π) and Fc is the

continuous part of F. Clearly, the first term on the right tends to D(x)/2π as n ® ∞.

The second term on the right hand side tends to 0 as n ® ∞, since, given ε > 0, there

exists a δ > 0 such that

x+δ∫
x−δ

∣∣d(Fc(t)∣∣ <
ε

2
‖H‖−1

so that∣∣∣∣∣∣
x+δ∫

x−δ

Kn

(
x − t

2π

)
dFc(t)

∣∣∣∣∣∣ < ε/2

and, by the bounded convergence theorem∣∣∣∣
(∫ x−δ

0
+

∫ 2x

x+δ

)
Kn

(
x − t
2π

)
dFc(t)

∣∣∣∣ < ε/2

for large n. Thus, the Hankel transform of {Ckeikx} converges to D(x)/2π.
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