299 research outputs found

    Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields

    Get PDF
    We have investigated the ac susceptibility of the spin triplet superconductor Sr2_2RuO4_4 as a function of magnetic field in various directions at temperatures down to 60 mK. We have focused on the in-plane field configuration (polar angle θ90\theta \simeq 90^{\circ}), which is a prerequisite for inducing multiple superconducting phases in Sr2_2RuO4_4. We have found that the previous attribution of a pronounced feature in the ac susceptibility to the second superconducting transition itself is not in accord with recent measurements of the thermal conductivity or of the specific heat. We propose that the pronounced feature is a consequence of additional involvement of vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.

    Superconducting Properties under Magnetic Field in Na0.35_{0.35}CoO21.3_{2}{\cdot}1.3H2_{2}O Single Crystal

    Full text link
    We report the in-plane resistivity and magnetic susceptibility of the layered cobalt oxide Na0.35_{0.35}CoO21.3_{2}{\cdot}1.3H2_{2}O single crystal. The temperature dependence of the resistivity shows metallic behavior from room temperature to the superconducting transition temperature TcT_{c} of 4.5 K. Sharp resistive transition, zero resistivity and almost perfect superconducting volume fraction below TcT_{c} indicate the good quality and the bulk superconductivity of the single crystal. The upper critical field Hc2H_{c2} and the coherence length ξ\xi are obtained from the resistive transitions in magnetic field parallel to the c-axis and the abab-plane. The anisotropy of ξ\xi, ξab/ξc=\xi_{ab} / \xi_{c} = 12 nm/1.3 nm \simeq 9.2, suggests that this material is considered to be an anisotropic three dimensional superconductor. In the field parallel to the abab-plane, Hc2H_{c2} seems to be suppressed to the value of Pauli paramagnetic limit. It may indicate the spin singlet superconductivity in the cobalt oxide.Comment: 4 pages, 4 figure

    Vortex lattice structures and pairing symmetry in Sr2RuO4

    Full text link
    Recent experimental results indicate that superconductivity in Sr2RuO4 is described by the p-wave E_u representation of the D_{4h} point group. Results on the vortex lattice structures for this representation are presented. The theoretical results are compared with experiment.Comment: 4 pages, 3 figures, M2S-HTSC-VI proceeding

    Quasi-particle Density in Sr2RuO4 Probed by means of the Phonon Thermal Conductivity

    Full text link
    The thermal conductivity of Sr2RuO4 along the least conducting direction perpendicular to the RuO2 plane has been studied down to 0.3 K. In this configuration the phonons remain the dominant heat carriers down to the lowest temperature, and their conductivity in the normal state is determined by the scattering on conduction electrons. We show that the phonon mean free path in the superconducting state is sensitive to the density of the quasi-particles in the bulk. An unusual magnetic field dependence of the phonon thermal conductivity is ascribed to the anisotropic superconducting gap structure in Sr2RuO4.Comment: 14 pages, 6 eps figures, Latex. This article corresponds to the reference 25 of Phys. Rev. Lett. vol.86 page2649-2652 (2001) and cond-mat/010449

    Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4

    Get PDF
    The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting transition temperature Tc of ~3 K. We have investigated the field-temperature (H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have also investigated the dependence of Hc2 on the angle between the field and the ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass model apparently fails to reproduce the angle dependence, particularly near H // c and at low temperatures. We propose that all of these charecteric features can be explained, at least in a qualitative fashion, on the basis of a theory by Sigrist and Monien that assumes surface superconductivity with a two-component order parameter occurring at the interface between Sr2RuO4 and Ru inclusions. This provides evidence of the chiral state postulated for the 1.5-K phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.

    Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr_2RuO_4

    Full text link
    A mechanism leading to the spin-triplet superconductivity is proposed based on the antiferromagnetic spin fluctuation. The effects of anisotropy in spin fluctuation on the Cooper pairing and on the direction of d vector are examined in the one-band Hubbard model with RPA approximation. The gap equations for the anisotropic case are derived and applied to Sr_2RuO_4. It is found that a nesting property of the Fermi surface together with the anisotropy leads to the triplet superconductivity with the d=z(sin{k_x}\pm isin{k_y}), which is consistent with experiments.Comment: 4 pages, 3 eps figures, revte

    Hybrid Micro-Gravity Simulator Consisting of a High-speed Parallel Robot

    Get PDF
    科研費報告書収録論文(課題番号:08555062・基盤研究(A)(2)・H8~H10/研究代表者:内山, 勝/6自由度超高速パラレルロボットの試作研究

    Low temperature electronic properties of Sr_2RuO_4 III: Magnetic fields

    Full text link
    Based on the microscopic model introduced previously the observed specific heat and ac-susceptibility data in the superconducting phase in Sr_2RuO_4 with applied magnetic fields are described consistently within a phenomenological approach. Discussed in detail are the temperature dependence of the upper critical fields H_{c2} and H_2, the dependence of the upper critical fields on the field direction, the linear specific heat below the superconducting phase transition as a function of field or temperature, the anisotropy of the two spatial components of the order parameter, and the fluctuation field H_p.Comment: 8 pages REVTEX, 4 figure

    Spin-triplet superconducting pairing due to local (Hund's rule, Dirac) exchange

    Full text link
    We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hund's rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.Comment: 16 pages, LaTex, submitted to Phys. Rev.
    corecore