299 research outputs found
Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields
We have investigated the ac susceptibility of the spin triplet superconductor
SrRuO as a function of magnetic field in various directions at
temperatures down to 60 mK. We have focused on the in-plane field configuration
(polar angle ), which is a prerequisite for inducing
multiple superconducting phases in SrRuO. We have found that the
previous attribution of a pronounced feature in the ac susceptibility to the
second superconducting transition itself is not in accord with recent
measurements of the thermal conductivity or of the specific heat. We propose
that the pronounced feature is a consequence of additional involvement of
vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.
Superconducting Properties under Magnetic Field in NaCoOHO Single Crystal
We report the in-plane resistivity and magnetic susceptibility of the layered
cobalt oxide NaCoOHO single crystal. The
temperature dependence of the resistivity shows metallic behavior from room
temperature to the superconducting transition temperature of 4.5 K.
Sharp resistive transition, zero resistivity and almost perfect superconducting
volume fraction below indicate the good quality and the bulk
superconductivity of the single crystal. The upper critical field and
the coherence length are obtained from the resistive transitions in
magnetic field parallel to the c-axis and the -plane. The anisotropy of
, 12 nm/1.3 nm 9.2, suggests that this
material is considered to be an anisotropic three dimensional superconductor.
In the field parallel to the -plane, seems to be suppressed to the
value of Pauli paramagnetic limit. It may indicate the spin singlet
superconductivity in the cobalt oxide.Comment: 4 pages, 4 figure
Vortex lattice structures and pairing symmetry in Sr2RuO4
Recent experimental results indicate that superconductivity in Sr2RuO4 is
described by the p-wave E_u representation of the D_{4h} point group. Results
on the vortex lattice structures for this representation are presented. The
theoretical results are compared with experiment.Comment: 4 pages, 3 figures, M2S-HTSC-VI proceeding
Quasi-particle Density in Sr2RuO4 Probed by means of the Phonon Thermal Conductivity
The thermal conductivity of Sr2RuO4 along the least conducting direction
perpendicular to the RuO2 plane has been studied down to 0.3 K. In this
configuration the phonons remain the dominant heat carriers down to the lowest
temperature, and their conductivity in the normal state is determined by the
scattering on conduction electrons. We show that the phonon mean free path in
the superconducting state is sensitive to the density of the quasi-particles in
the bulk. An unusual magnetic field dependence of the phonon thermal
conductivity is ascribed to the anisotropic superconducting gap structure in
Sr2RuO4.Comment: 14 pages, 6 eps figures, Latex. This article corresponds to the
reference 25 of Phys. Rev. Lett. vol.86 page2649-2652 (2001) and
cond-mat/010449
Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the
spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting
transition temperature Tc of ~3 K. We have investigated the field-temperature
(H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to
the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have
found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual
temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have
also investigated the dependence of Hc2 on the angle between the field and the
ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass
model apparently fails to reproduce the angle dependence, particularly near H
// c and at low temperatures. We propose that all of these charecteric features
can be explained, at least in a qualitative fashion, on the basis of a theory
by Sigrist and Monien that assumes surface superconductivity with a
two-component order parameter occurring at the interface between Sr2RuO4 and Ru
inclusions. This provides evidence of the chiral state postulated for the 1.5-K
phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr_2RuO_4
A mechanism leading to the spin-triplet superconductivity is proposed based
on the antiferromagnetic spin fluctuation. The effects of anisotropy in spin
fluctuation on the Cooper pairing and on the direction of d vector are examined
in the one-band Hubbard model with RPA approximation. The gap equations for the
anisotropic case are derived and applied to Sr_2RuO_4. It is found that a
nesting property of the Fermi surface together with the anisotropy leads to the
triplet superconductivity with the d=z(sin{k_x}\pm isin{k_y}), which is
consistent with experiments.Comment: 4 pages, 3 eps figures, revte
Hybrid Micro-Gravity Simulator Consisting of a High-speed Parallel Robot
科研費報告書収録論文(課題番号:08555062・基盤研究(A)(2)・H8~H10/研究代表者:内山, 勝/6自由度超高速パラレルロボットの試作研究
Low temperature electronic properties of Sr_2RuO_4 III: Magnetic fields
Based on the microscopic model introduced previously the observed specific
heat and ac-susceptibility data in the superconducting phase in Sr_2RuO_4 with
applied magnetic fields are described consistently within a phenomenological
approach. Discussed in detail are the temperature dependence of the upper
critical fields H_{c2} and H_2, the dependence of the upper critical fields on
the field direction, the linear specific heat below the superconducting phase
transition as a function of field or temperature, the anisotropy of the two
spatial components of the order parameter, and the fluctuation field H_p.Comment: 8 pages REVTEX, 4 figure
Spin-triplet superconducting pairing due to local (Hund's rule, Dirac) exchange
We discuss general implications of the local spin-triplet pairing among
fermions induced by local ferromagnetic exchange, example of which is the
Hund's rule coupling. The quasiparticle energy and their wave function are
determined for the three principal phases with the gap, which is momentum
independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the
case of triplet pairing in the two-band case leads to the four-components wave
function. Both gapless modes and those with an isotropic gap appear in the
quasiparticle spectrum. A striking analogy with the Dirac equation is briefly
explored. This type of pairing is relevant to relativistic fermions as well,
since it reflects the fundamental discrete symmetry-particle interchange. A
comparison with the local interband spin-singlet pairing is also made.Comment: 16 pages, LaTex, submitted to Phys. Rev.
Recommended from our members
Review and assessment of latent and sensible heat flux accuracy over the global oceans
For over a decade, several research groups have been developing air-sea heat flux information over the global ocean, including latent (LHF) and sensible (SHF) heat fluxes over the global ocean. This paper aims to provide new insight into the quality and error characteristics of turbulent heat flux estimates at various spatial and temporal scales (from daily upwards). The study is performed within the European Space Agency (ESA) Ocean Heat Flux (OHF) project. One of the main objectives of the OHF project is to meet the recommendations and requirements expressed by various international programs such as the World Research Climate Program (WCRP) and Climate and Ocean Variability, Predictability, and Change (CLIVAR), recognizing the need for better characterization of existing flux errors with respect to the input bulk variables (e.g. surface wind, air and sea surface temperatures, air and surface specific humidities), and to the atmospheric and oceanic conditions (e.g. wind conditions and sea state). The analysis is based on the use of daily averaged LHF and SHF and the asso- ciated bulk variables derived from major satellite-based and atmospheric reanalysis products. Inter-comparisons of heat flux products indicate that all of them exhibit similar space and time patterns. However, they also reveal significant differences in magnitude in some specific regions such as the western ocean boundaries during the Northern Hemisphere winter season, and the high southern latitudes. The differences tend to be closely related to large differences in surface wind speed and/or specific air humidity (for LHF) and to air and sea temperature differences (for SHF). Further quality investigations are performed through comprehensive comparisons with daily-averaged LHF and SHF estimated from moorings. The resulting statistics are used to assess the error of each OHF product. Consideration of error correlation between products and observations (e.g., by their assimilation) is also given. This reveals generally high noise variance in all products and a weak signal in common with in situ observations, with some products only slightly better than others. The OHF LHF and SHF products, and their associated error characteristics, are used to compute daily OHF multiproduct-ensemble (OHF/MPE) estimates of LHF and SHF over the ice-free global ocean on a 0.25° × 0.25° grid. The accuracy of this heat multiproduct, determined from comparisons with mooring data, is greater than for any individual product. It is used as a reference for the anomaly characterization of each individual OHF product
- …
