46 research outputs found

    Wind energy potential estimation using neural network and SVR approaches

    Get PDF
    The distribution of wind speed and the optimal assessment of wind energy potential are very important factors when selecting a suitable site for a wind power plant. In wind farm design projects for the supply of electrical energy, designers use the Weibull distribution law to analyse the characteristics and variations of wind speed in order to evaluate the wind potential. In our study we used two approaches, namely, the Multilayer Perceptron (MLP) approach and the Support Vector Machine (SVR) approach to determine a distribution law of wind speeds and to optimally evaluate the wind potential. These two approaches were compared to two well-known numerical methods which are the Justus Empirical Method (EMJ) and the Maximum Likelihood Method (MLM). The results show that the neural network approach produces a better fit of the distribution curve with an Root Mean Square Error (RMSE) of 0.00005016 at Lomé, 0.000040289 at Cotonou site and a more interesting estimate of the wind potential. After that SVR show a better result too with an RMSE of 0.0095618 at the Lomé site and 0.0053549 at the Cotonou site

    Advances in the measurement of coverage for RMNCH and nutrition: from contact to effective coverage.

    Get PDF
    Current methods for measuring intervention coverage for reproductive, maternal, newborn, and child health and nutrition (RMNCH+N) do not adequately capture the quality of services delivered. Without information on the quality of care, it is difficult to assess whether services provided will result in expected health improvements. We propose a six-step coverage framework, starting from a target population to (1) service contact, (2) likelihood of services, (3) crude coverage, (4) quality-adjusted coverage, (5) user-adherence-adjusted coverage and (6) outcome-adjusted coverage. We support our framework with a comprehensive review of published literature on effective coverage for RMNCH+N interventions since 2000. We screened 8103 articles and selected 36 from which we summarised current methods for measuring effective coverage and computed the gaps between 'crude' coverage measures and quality-adjusted measures. Our review showed considerable variability in data sources, indicator definitions and analytical approaches for effective coverage measurement. Large gaps between crude coverage and quality-adjusted coverage levels were evident, ranging from an average of 10 to 38 percentage points across the RMNCH+N interventions assessed. We define effective coverage as the proportion of individuals experiencing health gains from a service among those who need the service, and distinguish this from other indicators along a coverage cascade that make quality adjustments. We propose a systematic approach for analysis along six steps in the cascade. Research to date shows substantial drops in effective delivery of care across these steps, but variation in methods limits comparability of the results. Advancement in coverage measurement will require standardisation of effective coverage terminology and improvements in data collection and methodological approaches

    Count every newborn; a measurement improvement roadmap for coverage data.

    Get PDF
    BACKGROUND: The Every Newborn Action Plan (ENAP), launched in 2014, aims to end preventable newborn deaths and stillbirths, with national targets of ≀12 neonatal deaths per 1000 live births and ≀12 stillbirths per 1000 total births by 2030. This requires ambitious improvement of the data on care at birth and of small and sick newborns, particularly to track coverage, quality and equity. METHODS: In a multistage process, a matrix of 70 indicators were assessed by the Every Newborn steering group. Indicators were graded based on their availability and importance to ENAP, resulting in 10 core and 10 additional indicators. A consultation process was undertaken to assess the status of each ENAP core indicator definition, data availability and measurement feasibility. Coverage indicators for the specific ENAP treatment interventions were assigned task teams and given priority as they were identified as requiring the most technical work. Consultations were held throughout. RESULTS: ENAP published 10 core indicators plus 10 additional indicators. Three core impact indicators (neonatal mortality rate, maternal mortality ratio, stillbirth rate) are well defined, with future efforts needed to focus on improving data quantity and quality. Three core indicators on coverage of care for all mothers and newborns (intrapartum/skilled birth attendance, early postnatal care, essential newborn care) have defined contact points, but gaps exist in measuring content and quality of the interventions. Four core (antenatal corticosteroids, neonatal resuscitation, treatment of serious neonatal infections, kangaroo mother care) and one additional coverage indicator for newborns at risk or with complications (chlorhexidine cord cleansing) lack indicator definitions or data, especially for denominators (population in need). To address these gaps, feasible coverage indicator definitions are presented for validity testing. Measurable process indicators to help monitor health service readiness are also presented. A major measurement gap exists to monitor care of small and sick babies, yet signal functions could be tracked similarly to emergency obstetric care. CONCLUSIONS: The ENAP Measurement Improvement Roadmap (2015-2020) outlines tools to be developed (e.g., improved birth and death registration, audit, and minimum perinatal dataset) and actions to test, validate and institutionalise proposed coverage indicators. The roadmap presents a unique opportunity to strengthen routine health information systems, crosslinking these data with civil registration and vital statistics and population-based surveys. Real measurement change requires intentional transfer of leadership to countries with the greatest disease burden and will be achieved by working with centres of excellence and existing networks

    Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances

    Get PDF
    We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles.Peer reviewe

    Countdown to 2030 : tracking progress towards universal coverage for reproductive, maternal, newborn, and child health

    Get PDF
    Building upon the successes of Countdown to 2015, Countdown to 2030 aims to support the monitoring and measurement of women's, children's, and adolescents' health in the 81 countries that account for 95% of maternal and 90% of all child deaths worldwide. To achieve the Sustainable Development Goals by 2030, the rate of decline in prevalence of maternal and child mortality, stillbirths, and stunting among children younger than 5 years of age needs to accelerate considerably compared with progress since 2000. Such accelerations are only possible with a rapid scale-up of effective interventions to all population groups within countries (particularly in countries with the highest mortality and in those affected by conflict), supported by improvements in underlying socioeconomic conditions, including women's empowerment. Three main conclusions emerge from our analysis of intervention coverage, equity, and drivers of reproductive, maternal, newborn, and child health (RMNCH) in the 81 Countdown countries. First, even though strong progress was made in the coverage of many essential RMNCH interventions during the past decade, many countries are still a long way from universal coverage for most essential interventions. Furthermore, a growing body of evidence suggests that available services in many countries are of poor quality, limiting the potential effect on RMNCH outcomes. Second, within-country inequalities in intervention coverage are reducing in most countries (and are now almost non-existent in a few countries), but the pace is too slow. Third, health-sector (eg, weak country health systems) and non-health-sector drivers (eg, conflict settings) are major impediments to delivering high-quality services to all populations. Although more data for RMNCH interventions are available now, major data gaps still preclude the use of evidence to drive decision making and accountability. Countdown to 2030 is investing in improvements in measurement in several areas, such as quality of care and effective coverage, nutrition programmes, adolescent health, early childhood development, and evidence for conflict settings, and is prioritising its regional networks to enhance local analytic capacity and evidence for RMNCH

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    A call for standardised age-disaggregated health data.

    Get PDF
    The 2030 Sustainable Development Goals agenda calls for health data to be disaggregated by age. However, age groupings used to record and report health data vary greatly, hindering the harmonisation, comparability, and usefulness of these data, within and across countries. This variability has become especially evident during the COVID-19 pandemic, when there was an urgent need for rapid cross-country analyses of epidemiological patterns by age to direct public health action, but such analyses were limited by the lack of standard age categories. In this Personal View, we propose a recommended set of age groupings to address this issue. These groupings are informed by age-specific patterns of morbidity, mortality, and health risks, and by opportunities for prevention and disease intervention. We recommend age groupings of 5 years for all health data, except for those younger than 5 years, during which time there are rapid biological and physiological changes that justify a finer disaggregation. Although the focus of this Personal View is on the standardisation of the analysis and display of age groups, we also outline the challenges faced in collecting data on exact age, especially for health facilities and surveillance data. The proposed age disaggregation should facilitate targeted, age-specific policies and actions for health care and disease management
    corecore