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 The distribution of wind speed and the optimal 

assessment of wind energy potential are very 
important factors when selecting a suitable site for 

a wind power plant. In wind farm design projects 

for the supply of electrical energy, designers use 

the Weibull distribution law to analyse the 
characteristics and variations of wind speed in 

order to evaluate the wind potential. In our study 

we used two approaches, namely, the Multilayer 
Perceptron (MLP) approach and the Support 

Vector Machine (SVR) approach to determine a 

distribution law of wind speeds and to optimally 
evaluate the wind potential. These two approaches 

were compared to two well-known numerical 

methods which are the Justus Empirical Method 

(EMJ) and the Maximum Likelihood Method 
(MLM). The results show that the neural network 

approach produces a better fit of the distribution 

curve with an Root Mean Square Error (RMSE) of  
0.00005016  at Lomé, 0.000040289 at Cotonou site 

and a more interesting estimate of the wind 

potential. After that SVR show a better result too 

with an RMSE of 0.0095618 at the Lomé site and 
0.0053549 at the Cotonou site. 
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1 Introduction 

 

The fact that fossil fuels are running out worldwide 

has led many researchers to focus on renewable 
energy sources in the last decade [1]. In addition, 

increasing industrialization and population growth 

in many countries, coupled with rising energy 
demand, has made renewable energy sources more 

popular economically and environmentally 

sustainable. An economic system based on fossil fuels is 

no longer sustainable with a significant increase in energy 

demand, and this tendency to promote renewable energy 

                                                
* Corresponding author 

E-mail address: akim_salami@yahoo.fr 

is one way to better reduce environmental degradation 

from CO2 emissions [2]. Renewable energy sources 
include natural energy sources such as wind, solar, 

geothermal, ocean and bioenergy. Among these 

energy sources, wind energy is of considerable 
importance because of its energy production 

potential, market value, wide range of applications 

and economic characteristics. 

The exploitation of the wind energy plant first 
requires a statistical study of the site to assess its 

feasibility. Therefore, knowledge of the available and 

recoverable energy to predict the types of wind 
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turbines to be installed is necessary. The purpose of 

this study is therefore to make a statistical study of 

wind speed measurements taken at the operating site 
in order to determine a distribution law, which will 

be necessary to evaluate the wind potential. This 

study is important because wind speed is considered 
to be a random and intermittent variable, and a simple 

measurement is not enough to characterize the 

potential of a site [3]. Various functions are used in 

the literature to determine the distribution law, such 
as the Gamma function [4-6], inverse Gamma 

function [7], Rayleigh distribution, lognormal, 

normal, Pearson type V, Kappa, Gumbel, binomial, 
and Weibull distribution functions [8-11]. However, 

the most commonly used function for modeling wind 

speed data is the Weibull distribution function 
because it gives better results compared to the other 

functions [12].  

Elamouri and Amar Ben evaluated the wind 

potential at 17 sites in Tunisia using the 
meteorological method and the Weibull method. 

The result was that the Weibull method gave better 

results compared to the other methods [13]. Kiss 
and Jánosi [14] evaluated the surface wind speed 

over a 44-year period with a 6-h resolution. They 

tested the well-known distribution functions: 

Rayleigh, binormal, Weibull and lognormal, and 
they observed that the Weibull function gives a 

better performance. They found that the generalized 

gamma distribution, which is independent of shape 
parameters, provides an adequate and unified 

solution almost everywhere. The geographical 

distribution of the fitted parameters shows the 
possible climatological origin of the different wind 

speed distributions. They also found that the 

Weibull model can indeed characterize the wind 

histograms well overseas and in parts of the country. 
This comparison was made in Turkey and the 

distribution of Weibull prevailed over that of 

Rayleigh [15]. In Rwanda, the work of Safari et al. 
showed that the Weibull distribution outweighed the 

Rayleigh distribution in a statistical study of wind 

characteristics and wind potential assessment [16]. 
The Weibull distribution function is characterized 

by two parameters "k" and "c" and several 

numerical methods are available to express these 

parameters [17-18]. The best-known methods 
include the Moment Method (MM), Justus 

Empirical Method (EMJ), Maximum Likelihood 

Method (MLM) [19-20], Modified Maximum 
Likelihood Method (MMLM), Energy Structure 

Factor Method (EPFM), Empirical Lysen Method 

(EML), Graphical Method (GM) [21-22]. In order to 

find a better approximation of the wind speed 

distribution law, other approaches were used, 

namely: the Multilayer Perceptron (MLP) used by 
THIAW et al. in their work to evaluate the wind 

potential in Senegal [3], gave a better result than the 

Weibull distribution with an area of up to 0.997.  
M. Carolin Mabel and E. Fernandez developed a 

model using neural network methodology that 

involves three input variables - wind speed, relative 

humidity and generation hours - and one output 
variable, which gives the energy output of wind 

farms. This model was used to estimate the energy 

yield of 07 wind farms in India with a root mean 
square error of 7.6.10-3 [23]. 

A generalized feed-forward neural network (GFNN) 

is used by Celik and Kolhe [24] to estimate the annual 
wind speed distribution. It has been noted that GFNN 

produces a better wind speed distribution for 

calculating wind energy production for some wind 

turbine generators. 
Togo and Benin are a region where renewable 

energies are being promoted, particularly wind 

energy, to compensate for the energy deficit of these 
countries. We are interested in these countries, more 

specifically in the Lomé and Cotonou sites for their 

geographical positions and also for wind energy 

projects. Such is the case of the Eco Delta project 
which will allow the construction of the first 25.2 

MW wind farm in West Africa in Togo. 

In our study, we will use the MLP, SVR, EMJ and 
MLM approaches because of their better 

performances to adjust the frequency histogram and 

to evaluate the wind potential in an optimal way [25-
27]. Few studies have been done on the Lomé and 

Cotonou sites in relation to wind potential 

assessment. The most recent one is that of Salami and 

al [17]. who worked on the evaluation of the wind 
potential using a hybrid Weibull approach because of 

the calm winds at the Lomé site. Since the approach 

used does not involve neural networks, we thought it 
appropriate to explore their approach given the 

notoriety of neural networks in non-linear regression. 

The paper is organized as follows: Section 2 
describes the classical methods used to evaluate wind 

potential and Section 3 describes the numerical 

methods used to evaluate wind potential. Section 4 

discusses the statistical performance indicators used. 
In the fifth section, we present the calibrations made 

to obtain the ideal model for the simulation. Then, in 

section 6, we present our results and discussions 
resulting from the simulations at the two sites (Lomé 

and Cotonou) and conclude in section 7. 
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2. Classical method of wind distribution and 

numerical methods for wind potential 

assessment. 

 
The paper is organized as follows: Section 2 

describes the classical methods used to evaluate wind 

potential and Section 3 describes the numerical 
methods used to evaluate wind potential. Section 4 

discusses the statistical performance indicators used. 

In the fifth section, we present the calibrations made 
to obtain the ideal model for the simulation. Then, in 

section 6, we present our results and discussions 

resulting from the simulations at the two sites (Lomé 

and Cotonou) and conclude in section 7. 
 

2.1 Estimation of Weibull parameters 

The Weibull distribution is a widely used tool in 
statistical analysis [21]. In the context of wind 

energy, this tool will be used to understand the wind 

distribution at a production site and this is commonly 
referred to as the Weibull probability density 

function of wind speed. This function is characterized 

by three or two parameters [28], the most commonly 

used is the two-parameter function (1). 
  

 

1
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where ( )f v  is the distribution law or probability 

density , v  is the wind speed expressed in (m/s), c  

is the scale factor, k is the shape factor characterizing 

the asymmetry of the distribution.  
When k = 2 the distribution is called Rayleigh 

distribution which is a special case of the Weibull 

distribution. The cumulative function of the 
probability density function is given by (2) [3]. 
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In the literature several numerical methods are used 

to determine the parameters and the Weibull 

distribution: the Justus Empirical Method and the 

Maximum Likelihood Method, etc. 

 
2.1.1 The Empirical Method of Justus (EMJ) 

The form factor k and the scale factor c can be 

estimated by the following equation: 
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2.1.2 The Maximum Likelihood Method (MLM) 

This is a very difficult method to solve and it is 
through numerical iterations that the parameters of 

the Weibull distribution are determined [29]. The 

parameters k and c are determined by equations (5) 
and (6). 
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2.2. The wind potential assessment 

Wind potential is estimated by relationships (7) to 
(9). 

▪ Energy available (Ea) at the site during a period T 

( 30×24h for the month or 365 × 24h for the year) 

is given by (7). It is expressed in kWh/m². 

3

0

1
. ( ).
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T
E f v v dv



=               (7) 

▪ Recoverable energy (Er) at the site according to 

the characteristics of the wind turbine is given by 

the relation (8) 

3 31
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[Kwh] 
▪ Energy produced (Ep) by the wind turbine is 

expressed by the relation (9) 

     ( ) ( )
1000

c

s

V

p

V

T
E f v P v dv=            (9) 

[kWh] 

In relations (7) to (9):  
- ( )f v is the wind speed distribution function; 

- S is the area swept by the wind turbine blades; 

-  is the air density, a parameter varying with  

    latitude and temperature; 

- v is the instantaneous wind speed; 

- Vs is the starting speed of the wind turbine; 

- Vr is the nominal speed of the wind turbine; 
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- Vc is the maximum speed of the wind turbine; 

- P(v) characterizes the power of the wind turbine as  

   a function of the wind speed. 
Wind turbine power curve modeling, which shows 

the relationship between wind speed and power, can 

be used as an important tool for monitoring and 
forecasting wind energy [30]. The wind turbine 

power curve is shown in Figure 1. 

 
 

Figure 1. Power curve of a wind turbine 
The power curve characterizes how the wind turbine 

converts a range of speed into electric power. The 

power output 𝑃(𝑣) of the wind turbine as a function 

of the wind speed is given by (10). 
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This power is a simple expression except in the 

interval. In this interval  ,
s r

v v , the expression of the 

power can be approximated by (11). 

1 1 1

k
P a b v= +     (11) 

where k is the Weibull constant already defined and 

a1 and b1 expressed by (12) and (13). 
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3. Numerical methods for wind speed 

characterization 

In this section we will examine two numerical 

approaches, the MLP approach and the SVR 

approach. 

The MLP approach is a neural network based 

method and the SVR approach is a maximum 

margin notion and kernel based method. They 

are widely used in pattern recognition, 

prediction, classification and regression analysis. 

They offer an alternative way to deal with complex 

and poorly defined problems [35]. 

 
3.1 MLP approaches 

An Artificial Neuronal Network (ANN) is defined as 

a complex network made up of interconnected 
networks formed by elementary computer units 

(formal neurons).  The neurons are organized in 

layers and can be connected in different ways. This 

topology of connection between neurons defines the 
architecture of the network and is related to the task 

to be performed. This task is often specified in the 

form of examples including a set of input values and 
a set of corresponding output values [3]. The network 

must "train" in order to be able to provide correct 

answers for other unknown inputs. Learning is a 
procedure for evaluating the network to meet 

performance criteria in order to minimize the error 

between the network output and the actual output 

value. Learning is performed according to an 
algorithm specific to the network architecture. 

There are several types of ANNs. The MLP type 

ANNs are the most widely used, especially in 
nonlinear regression problems [31-32]. An MLP 

network consists of one or more hidden sigmoid 

layers as an activation function and an output layer. 

Figure 4 shows an example of a two-input MLP 
network comprising a three-neuron hidden layer and 

a neuron output layer. The neurons of the hidden 

layer L receive information from the neuron layer  L-
1 and are connected to the neuron layers L+1. There 

is no connection between neurons of the same layer. 

Each neuron of the output layer performs a non-linear 
function of the input layer. For more information on 

MLP, see [33-34]. The si potential of a neuron i and 

its activation Oi are given by relations (14) and (15), 

respectively 

1

p

i ij j j

j

s w x b
=

= −  (14) 

( )
i i i

O h s=   (15) 

 

where p denotes the number of neurons of the 

upstream layer connected to the neurons xi; xj 

represents the input j of the network if the neuron 

i belongs to the first hidden layer, or, on the 

contrary, the neuron j represents the output Oj of 

the hidden layer which comes before the neuron 

i; wij is a constant scalar which represents the 

weight of the connection between the neuron i 

and the neuron j; bi is the bias; hi() the activation 

function of the neuron i. It can be different 
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because it depends on whether the neuron is a 

hidden neuron or an output neuron. In general 

hidden neurons have the same activation 

function which is the sigmoid function. Output 

neurons generally have the same activation 

function which is linear i.e. h(s)=s. 

 
Figure 2. MLP structure 

 
3.2 SVR approaches 

Derived from Support Vector Machine or Wide 

Margin Separators, (SVM) which are widely used 
tools in pattern recognition, prediction, classification 

and regression analysis [36-38]. SVMs have a better 

performance compared to other traditional 

techniques such as neural networks and other 
conventional statistical models. The SVR can be 

divided into two categories depending on the 

problems faced. The linear SVR is available for linear 
problems and the non-linear SVR for more complex 

cases. The purpose of SVR is to approximate ( ), yi ix

a set of data by a function ,w bf  

,
( ) ,

w b
f x w x b=   +  in the linear case such as 

( ),w b i i
f x y −      with  1,i n            (16) 

The idea is to minimize the term w while being under 

the constraint of not exceeding an error rate 𝜀. From 
a graphical point of view, this is like finding an area 

of the plane that contains all the xi examples of width 

2ε called tube. If we consider the minimization of we 

obtain the quadratic problem of the relation (17): 
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This description of the problem therefore considers 

that a linear function that approximates all the 
examples with a precision exists. This is not always 

the case in practice. In the presence of outliers, it is 

also more important to allow some errors. In this 

case, the concept of flexible margin is used. It 

consists in introducing relaxation variables 𝜉𝑖, 𝜉𝑖∗ to  

make the constraints of the optimization problem 

feasible, which becomes the relation (18); 
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( ) ( )
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y f x for y f x
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(18) 

This function can be interpreted as creating a ray 

insensitivity tube ε around the 
, ( )w bf x  . Going 

through the dual formulation and the Lagrange 

equation, the resulting function can be written as : 

( ) ( )*

1

,
n

i i i

i

f x x x b 
=

= + +        (19) 

 𝛼𝑖 and 𝛼𝑖
∗ are the Lagrange multipliers derived 

from the dual formulation. 
As the data become more and more complex, 
nonlinear regression problems are solved with the use 

of kernel functions. That is, by projecting the data 

from the input space into a higher dimensional space. 

This is done in order to save time. The generalized 
form of the function becomes the relation (20). 

( ) ( ) ( )*

1

,
n

i i i

i

f x K x x b 
=

= + +           (20) 

The types of kernels available for solving nonlinear 

problems are listed in Table 1. 
 

Table 1: Types of kernels 

Kernel Function 

Linear ( ), y ,K x x y=  

Polynomial ( ) ( ), ,
d

K x y a x y b=  +  

Gaussian ( )
2

2
, exp

2

x y
K x y



−
= −

 
  
 

 

  

4. Evaluating the performance of approaches 

The performance of a calculation method is related to 

the margin of error that is obtained. The smaller the 

margin of error, the more efficient the method used. 

In this work we used two performance indices, 
namely the square root means square error (RMSE) 

and the coefficient of determination (R²). 
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,i estX  is the estimated value and ,i actX  is the 

observed value 
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,act moyX is the mean value of the measured or 

observed data and estX  is the estimated value. 

 

5. Calibration 
In this section, we determine the best settings for the 
Cotonou and Lomé sites with the different 

approaches discussed. 

5.1 Weibull parameters from distribution-

based methods 

The values of the Weibull k and c parameters are 

calculated according to the different classical 

methods used (EMJ and MLM) and the results are 
presented in Table 2. Using the factors found the 

modelling of the Weibull distribution will be done. 

 

Table 2 : Weibull parameters obtained from EMJ and 

MLM for the sites of Cotonou and Lomé 

Methods 
Lomé Cotonou 

k c k c 

EMJ 1,8233 3,9704 2,3671 4,5264 

MLM 2,0310 4,1788 2,5722 4,6173 

 
5.2 MLP 

In order to be able to adjust the histogram of wind 

speed frequencies, we have defined a MLP with two 
(02) inputs, which will be dedicated to wind speeds 

and frequencies, and only one output, which will be 

the speed frequencies. For the hidden layer the 

number of neurons of the hidden layer after several 
tests is set to 9 and we have chosen a single neuron 

for the output. The result of the tests is obtained by 

varying the number of neurons in the hidden layer 
from 4 to 10. 

 

Table 3: Choice of the number of neurons 

 

Nombre de 

Neurones 

RMSE 

 Lomé Cotonou 

4 0,00184301 0,00534417 

5 0,00167651 0,00488000 

6 0,00038814 0,00487000 

7 0,00041508 0,00126947 

8 0,00041634 0,00001450 

9 0,00008020 0,00001380 

10 0.0009560 0,00001980 

 

 
5.3 SVR 

To determine the fit of the wind speed frequency 

histogram, wind speeds are used as input to the SVR 

model and speed frequencies are used as output. 
Since the problem we are working on is non-linear, 

we used kernel functions to find the best function. 

The RMSE is used here to make the comparison to 
find the best result. Table 4 shows the results of the 

tests for the different locations. According to the 

results, the Gaussian kernel is the one with the best 
performance. 

Table 4: Comparison of SVR kernels 

 

Kernels RMSE 

Lomé Cotonou 

Linear 0.056404569 0,133998139 

Polynomial 0,041952826 0,084815911 

Gauss 0,000704443 0,003901821 

 

6 Results and discussion 

The purpose of this article is to carry out a 
comparative evaluation of wind potential assessment 

methods in Togo and Benin, the case study includes 

the following four steps: 

▪ For each of the four methods EMJ, MLM, MLP and 
SVR, we obtain the probability density function of 

the wind speed or distribution law fj (v) by using as 

input the measured wind speed series 
▪ We fit the obtained probability densities to the 

frequency histograms and derive the approximation 

errors of the distribution ej 

▪ Then we calculate the energy potentials Ej using the 
power curve of the wind turbines and evaluate the 

associated energy errors ξj 

▪ Finally, the methods for evaluating energy potential 
are compared on the basis of performance 

indicators, which are the RMSE and the R2 

 
6.1 Wind speed characterization performance 

To verify that the results obtained by the three 

approaches are distributional laws, the integral given 

by the relation must be calculated (23). If this integral 
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is equal to 1 then these results obtained will be 

considered as laws of distribution. Table 5 shows the 

results of the calculation. 

Table 5. Distribution area 

 MLP SVR 

Lomé 0.996 0.995 

Cotonou 0.997 0.996 

 

The results in the table tend towards 1, so we can say 

that they are distribution laws. 

            ( )
max

0

. 1

v

f v dv =     (23) 

Figures 3 and 4 show the distribution function curves 

for fitting the annual wind frequency histograms for 

the two sites. 

Performance evaluation metrics described in 
previous section are presented in Table 6 to compare 

the performance of the five methods. Results show a 

better performance of the MLP approaches compared 
to the other approaches used, regardless of the wind 

site. These results compared to the work of Asghar 

and al. show that the MLP approach fitted the 
distribution curve better than the neuro-fuzzy 

approach [21] (0.00005016 versus 0.0014294 for the 

RMSE). We also observe the performance of this 
approach compared to the work of Salami et al [17]. 

based on the consideration of calm winds at the Lomé 

site. The MLP approach fits the distribution better 
than the Hybrid Weibull approach used (0.95%) 

 

 

Figure 3 Wind speed distribution function for the site of 

Lomé 

 

Figure 4 Wind speed distribution function for the site of 

Cotonou 

 

In order to compare the approaches used, the 

performance indicators for each approach are listed 
in Table 6. 

The results show that the MLP approach prevails 

over the others regardless of the site. 

 
6.2 Wind turbine 

In our work, we based our choice of the E-48 wind 

turbine in ENERCON reviews [39]. Its 
characteristics are given in Table 7. 

Table 7. Characteristics of E-48 

Name E-48 

Cut-in speed (m/s) 3 

Rated speed (m/s) 12 

Cut-out speed (m/s) 25 

Rated output power (kW) 800 

Blade diameter (m) 48 

Hub(m) 76 

Normally the cut-off speed will vary between 28 

and 34 ms-1. However, in our study, a speed of 

25 ms-1 was assumed due to the absence of the 

power curve beyond this speed. 

Figure 5 shows the wind power curve of E-48 as 

modeled by the constructor as well as using the 

numerical methods discussed in this paper. 
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Figure 5. Characteristic power curve modeling for E-48 

 

Table 6. Method comparison 

 

Since wind speed measurements have not been 

taken at the altitude where the turbines will be 

deployed, it is necessary to extrapolate the wind 

speed values at the hub height of the turbine 

using the vertical wind profile power law model 

proposed by Hellman [40] and expressed in 

equation (24). 

0 0

v h

v h



=
 
 
 

    (24) 

Where v  is the wind speed at altitude h and 0v the 

speed at reference altitude 0h . The wind shear 

coefficient or coefficient of friction α, generally 

ranges from 0.40 in areas with tall buildings to 0.10 

on smooth, hard ground, lakes or the ocean. For 

Lomé and Cotonou, as the measurements were taken 
in airport areas, we chose α=0.1 in this study. 

 

 
 

6.3 Wind potential estimation 

In this section, we compare the accuracy of the 
energy potential estimates of the four methods (EMJ, 

MLM, MLP, and SVR). The comparison is made 

with the observed energy potential which is obtained 

by calculating the energy potential using the time 

series of the measured raw wind speed and the wind 
power curve of the selected turbine manufacturer. 

Three quantities of energy are taken into account for 

the comparison: the available energy per unit area Ea 
in kWh/m2, the recoverable energy Er in kWh and the 

produced energy Ep in kWh. 

 

6.3.1  Available energy 

 

Table 8 presents the energy available per unit area 

observed monthly and estimated by the methods. To 
show the comparison between the results of the 

approaches used, we present the correlations between 

the observed and estimated available energy on 
figures 6 and 7. The RMSE of the MLP approach is 

at least three orders of magnitude lower than that of 

the other three methods. The RMSE tends to 
overestimate the energy density at the Lomé site. 

 

6.3.2 Recoverable energy 

 

As previously, a comparison was made between the 

monthly recoverable energy Er in kWh respectively 

at the Lomé and Cotonou sites and the observed or 
actual recoverable energy values which are 

calculated from the measured wind speed data (see 

Table 9). Figures 8 and 9 show the correlation 
between observed and estimated recoverable energy 

for the Lomé and Cotonou sites respectively. 

The correlation graphs in Figures 10 and 11 show that 

the MLM and EMJ lead to the most inaccurate 
estimates of recoverable energy. In fact, for both 

sites, these methods underestimate the recoverable 

energy values. This behaviour results from the 
Weibull distribution methods overestimating the 

density of low velocities. Although the SVR gives 

acceptable estimates for the Lomé site, its RMSE at 
the Cotonou site is of the same order of magnitude as 

those of MLM and EMJ. As with the estimates of 

available energy, MLP ranks first with more accurate 

estimates. 
 

 

 EMJ MLP MLM SVR 

 R² RMSE R² RMSE R² RMSE R² RMSE 

Lomé 0.9687 0.0187 1.000 0.000 0.9649 0.020 0.9841 0.009 

Cotonou 0.9570 0.0220 1.000 0.000 0.9670 0.021 0.9989 0.005 
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6.3.3 Produced energy 

 

Table 10 shows the energy produced or wind power 
generation Ep in kWh at the Lomé and Cotonou sites. 

The observed or actual energy production calculated 

from the measured wind speed data is compared to 
the estimated wind energy production. Figures 14 and 

15 show the correlation between observed and 

estimated energy production for the Lomé and 

Cotonou sites respectively. 

The results of the correlation study show that MLM 

and EMJ methods based on the Weibull distribution 

systematically underestimate the energy output of 
wind turbines. Although the SVR obtains acceptable 

estimates at the Lomé site, it mainly underestimates 

wind energy production values at the Cotonou site. 
The MLP proves to be the most accurate for both 

sites, as shown in Figures 12 and 13. 

 

 
 

 

 
Table 8: Available energy density estimation (kWh/m2) 

 

Figure 6. Correlation between observed and estimated 

available energy density for Lomé 

 

Figure 7. Correlation between observed and estimated 

available energy density for Cotonou 

 

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 43,62 43,29 52,60 44,50 46,59 46,10 46,14 59,59 45,42 46,16 

Feb. 77,54 77,71 92,71 80,45 82,72 87,52 87,08 79,94 91,47 90,32 

Mar. 87,74 88,10 121,17 90,42 92,63 96,84 96,84 89,27 101,89 100,09 

Apr. 69,97 70,31 171,06 72,89 75,42 82,69 82,80 78,76 85,44 85,56 

May 46,96 48,73 43,74 48,30 50,29 57,68 58,35 70,34 58,15 59,47 

June 57,86 57,34 66,50 59,75 61,82 71,41 71,33 89,29 74,04 75,48 

July 89,85 89,35 114,59 91,98 92,42 116,59 116,62 133,49 120,70 119,51 

Aug. 110,61 111,26 158,28 112,40 112,03 118,36 117,46 143,79 122,18 121,85 

Sep. 92,35 92,95 110,75 94,20 94,97 100,96 100,83 116,15 106,59 105,99 

Oct. 57,34 57,33 64,77 58,94 60,81 58,21 58,01 66,62 59,62 60,64 

Nov. 44,90 44,88 56,86 45,91 47,50 52,70 52,80 66,44 52,41 52,70 

Dec. 39,55 39,62 52,62 40,12 41,83 47,09 47,10 61,45 46,21 46,62 
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Table 9: Recoverable energy estimation (kWh) 

 

 

 

 

 

Table 10: Wind turbine output energy estimation (kWh) 

  

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 1338,96 1487,41 1543,50 576,84 911,75 1575,35 1632,74 1741,70 675,97 821,84 

Feb. 
2256,12 2400,51 2397,26 982,80 1263,56 3028,02 3135,22 2259,32 1322,18 1484,56 

Mar. 2728,72 2689,27 2761,58 1084,95 1373,65 3628,73 3466,82 2322,58 1484,77 1679,00 

Apr. 2555,64 2271,76 2391,24 892,63 1186,90 3149,38 2886,74 2281,55 1199,76 1415,63 

May 1962,82 1673,98 1642,78 607,58 905,78 2288,98 1972,34 1861,55 809,24 1007,27 

June 2026,72 2045,79 2033,82 749,78 1006,57 2508,27 2490,53 2392,91 987,93 1272,66 

July 2933,38 3059,06 3135,84 1225,42 1365,74 3736,94 3904,56 3350,62 1701,40 1823,20 

Aug. 3496,85 3610,83 3655,80 1532,22 1606,99 4325,46 4133,44 3930,85 1836,23 1926,84 

Sep. 3257,28 3101,21 3118,39 1206,89 1345,47 3849,82 3590,79 3449,54 1457,29 1782,36 

Oct. 2403,33 2087,76 2022,03 745,97 967,02 2531,42 2052,42 1894,93 838,57 1028,53 

Nov. 2001,16 1812,64 1920,72 615,12 831,77 2119,30 1919,72 1764,69 795,16 919,93 

Dec. 1718,32 1614,71 1728,40 537,15 806,48 1857,41 1732,89 1833,68 701,57 813,13 

 Lomé Cotonou 

Month Obs. MLP SVR EMJ MLM Obs. MLP SVR EMJ MLM 

Jan. 44819,60 44805,30 54004,19 40591,66 45473,75 47268,98 47317,13 61302,58 45494,08 46781,36 

Feb. 80666,95 80371,97 89951,98 79225,91 83570,95 92295,19 92479,42 80897,66 95352,61 94657,03 

Mar. 91143,12 91333,28 115021,50 88836,31 93463,65 102517,44 101898,57 90686,23 106856,16 105490,33 

Apr. 72372,36 72281,81 112155,15 71901,73 76209,15 86458,74 86376,54 78097,55 88347,20 89214,99 

May 48072,94 47625,44 42527,44 47417,46 50712,13 58957,99 58815,27 60432,51 59142,45 61048,44 

June 59907,14 59463,21 63890,18 58877,55 62420,96 74447,50 74353,51 85634,60 74949,03 77799,98 

July 94292,97 93343,02 114702,58 94203,07 95524,21 122945,80 123028,00 135774,10 126909,05 126143,37 

Aug. 115991,63 114254,39 152781,04 116972,61 116997,09 125951,93 124789,52 152155,07 130072,52 129943,30 

Sep. 98024,08 98078,04 116612,05 93053,45 95641,97 108463,80 107869,25 124577,80 105378,70 109467,25 

Oct. 60993,18 61047,57 67561,40 57185,18 61151,65 60397,15 60154,68 60736,78 60828,04 62378,37 

Nov. 50490,76 50490,78 62900,26 47248,99 50637,15 54363,16 54502,78 58051,67 53762,00 54173,96 

Dec. 44669,80 44758,06 58326,92 41867,41 45427,11 48226,40 48168,58 57147,80 47100,35 47592,87 
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Figure 8. Correlation between observed and estimated 

recoverable energy on the site of Lomé 

 

Figure 9. Correlation between observed and estimated 

recoverable energy on the site of Cotonou 

7. Conclusion  
 

This study of wind energy resource assessment in 

Benin and Togo, two West African countries, 
examines four methods for assessing wind energy 

potential: MLP, SVR, EMJ, and MLM.As 

expected, the results of the case studies confirm 
that accurate estimation of the wind speed 

distribution law has a significant impact on wind 

potential assessment. The comparison of the 

performances of the methods studied in this work 
shows that the MLP approach, with an RMSE of 

0.00005016 for the Lomé site and 0.000040289 for 

the Cotonou site, is the best method for evaluating 
the wind potential at the Togo and Benin sites. The 

SVR method is in second place with an RMSE of 

0.0095618 for the Lomé site and 0.0053549 for the 
Cotonou site. 

 

Figure 10. Correlation between observed and 

estimated wind energy output on the site of Lomé 

 

Figure 11. Correlation between observed and 

estimated wind energy output on the site of Cotonou 

These two methods based respectively on neural 

networks and regression are clearly more efficient 

than the other two methods studied in this work, for 

the estimation of the energy produced per unit area, 
the recoverable energy and the wind energy 

production for the two wind sites. Although the 

Weibull distribution is widely used in the 
assessment of wind energy potential for wind farm 

sites, this study showed that the two methods based 

on the Weibull distribution, EMJ and MLM, lead 

to the least accurate estimates, particularly in the 
quantification of recoverable energy and wind 

turbine production.  Although the SVR is the 

second most important method used for The study, 
it is unstable depending on the type of estimate and 

the wind site. Its performance is not uniform for the 

two sites and it is less recommended for the 
Cotonou site. Therefore, the best method for 
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estimating wind potential recommended for the 

Lomé (Togo) and Cotonou (Benin) sites is the MLP 

based on the neural system with 9 neurons in the 

hidden layer. To summarize, the SVR and MLP 

approaches, once calibrations are well done, are 

good leads in wind potential assessment for any 
site. In sum, the different approaches used have 

made it possible to evaluate the wind energy 

potential on the two sites. On average, the energy 
available annually on the Lomé site is evaluated at 

68.40 kWh/m² by the MLP, 92.13 kWh/m² by the 

SVR against 68.19 kWh/m² for the real value. For 
the Cotonou site the average is around 77.95 

kWh/m² for the MLP, 87.93 kWh/m² for the SVR 

against 78.01 for the observed average. 

The annual recoverable averages are estimated 
respectively as follows 2389.94 kWh for the 

observed,2321.24 for the MLP and 2362.61 for the 

SVR on the site of Lomé and that of Cotonou: 
2883.26 kWh, 2743.18kW and 2423.66 kWh 

respectively for the observed value, MLP and SVR 

approaches. With the E-48 aerogenerator, installed 
at an altitude of 76m, the average energy produced 

during the year is 71787.04 kWh at the Lomé site 

and the estimates by the different approaches give 

71487.74 kWh for the MLP and 87536.22 for the 
SVR. At the Cotonou site we observe 81857.84 

kWh against 81644.10 kWh for the MLP and 

87124.53 for the SVR. 
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