11,573 research outputs found
Epicyclic orbital oscillations in Newton's and Einstein's dynamics
We apply Feynman's principle, ``The same equations have the same solutions'',
to Kepler's problem and show that Newton's dynamics in a properly curved 3-D
space is identical with that described by Einstein's theory in the 3-D optical
geometry of Schwarzschild's spacetime. For this reason, rather unexpectedly,
Newton's formulae for Kepler's problem, in the case of nearly circular motion
in a static, spherically spherical gravitational potential accurately describe
strong field general relativistic effects, in particular vanishing of the
radial epicyclic frequency at the marginally stable orbit.Comment: 8 page
Optical geometry for gravitational collapse and Hawking radiation
The notion of optical geometry, introduced more than twenty years ago as a
formal tool in quantum field theory on a static background, has recently found
several applications to the study of physical processes around compact objects.
In this paper we define optical geometry for spherically symmetric
gravitational collapse, with the purpose of extending the current formalism to
physically interesting spacetimes which are not conformally static. The
treatment is fully general but, as an example, we also discuss the special case
of the Oppenheimer-Snyder model. The analysis of the late time behaviour shows
a close correspondence between the structure of optical spacetime for
gravitational collapse and that of flat spacetime with an accelerating
boundary. Thus, optical geometry provides a natural physical interpretation for
derivations of the Hawking effect based on the ``moving mirror analogy.''
Finally, we briefly discuss the issue of back-reaction in black hole
evaporation and the information paradox from the perspective of optical
geometry.Comment: 13 pages, 10 figures, aps, revtex, To be published in PR
Optical reference geometry of the Kerr-Newman spacetimes
Properties of the optical reference geometry related to Kerr-Newman
black-hole and naked-singularity spacetimes are illustrated using embedding
diagrams of their equatorial plane. Among all inertial forces defined in the
framework of the optical geometry, just the centrifugal force plays a
fundamental role in connection to the embedding diagrams because it changes
sign at the turning points of the diagrams. The limits of embeddability are
given, and it is established which of the photon circular orbits hosted the by
Kerr-Newman spacetimes appear in the embeddable regions. Some typical embedding
diagrams are constructed, and the Kerr-Newman backgrounds are classified
according to the number of embeddable regions of the optical geometry as well
as the number of their turning points. Embedding diagrams are closely related
to the notion of the radius of gyration which is useful for analyzing fluid
rotating in strong gravitational fields.Comment: 28 pages, 17 figure
Leaving the ISCO: the inner edge of a black-hole accretion disk at various luminosities
The "radiation inner edge" of an accretion disk is defined as the inner
boundary of the region from which most of the luminosity emerges. Similarly,
the "reflection edge" is the smallest radius capable of producing a significant
X-ray reflection of the fluorescent iron line. For black hole accretion disks
with very sub-Eddington luminosities these and all other "inner edges" locate
at ISCO. Thus, in this case, one may rightly consider ISCO as the unique inner
edge of the black hole accretion disk. However, even for moderate luminosities,
there is no such unique inner edge as differently defined edges locate at
different places. Several of them are significantly closer to the black hole
than ISCO. The differences grow with the increasing luminosity. For nearly
Eddington luminosities, they are so huge that the notion of the inner edge
losses all practical significance.Comment: 12 pages, 15 figures, submitted to A&
Circular geodesics of naked singularities in the Kehagias-Sfetsos metric of Ho\v{r}ava's gravity
We discuss photon and test-particle orbits in the Kehagias-Sfetsos (KS)
metric. For any value of the Ho\v{r}ava parameter , there are values of
the gravitational mass for which the metric describes a naked singularity,
and this is always accompanied by a vacuum "antigravity sphere" on whose
surface a test particle can remain at rest (in a zero angular momentum
geodesic), and inside which no circular geodesics exist. The observational
appearance of an accreting KS naked singularity in a binary system would be
that of a quasi-static spherical fluid shell surrounded by an accretion disk,
whose properties depend on the value of , but are always very different from
accretion disks familiar from the Kerr-metric solutions. The properties of the
corresponding circular orbits are qualitatively similar to those of the
Reissner-Nordstr\"om naked singularities. When event horizons are present, the
orbits outside the Kehagias-Sfetsos black hole are qualitatively similar to
those of the Schwarzschild metric.Comment: 8 pages, 9 figure
The upper kHz QPO: a gravitationally lensed vertical oscillation
We show that a luminous torus in the Schwarzschild metric oscillating along
its own axis gives rise to a periodically varying flux of radiation, even
though the source of radiation is steady and perfectly axisymmetric. This
implies that the simplest oscillation mode in an accretion flow, axisymmetric
up-and-down motion at the meridional epicyclic frequency, may be directly
observable when it occurs in the inner parts of accretion flow around neutron
stars and black holes. The high-frequency modulations of the X-ray flux
observed in low-mass X-ray binaries at two frequencies (twin kHz QPOs) could
then be a signature of strong gravity both because radial and meridional
oscillations have different frequencies in non-Newtonian gravity, and because
strong gravitational deflection of light rays causes the flux of radiation to
be modulated at the higher frequency.Comment: 8 p., 4 fig
Centrifugal force in Kerr geometry
We have obtained the correct expression for the centrifugal force acting on a
particle at the equatorial circumference of a rotating body in the locally
non-rotating frame of the Kerr geometry. Using this expression for the
equilibrium of an element on the surface of a slowly rotating Maclaurin
spheroid, we obtain the expression for the ellipticity (as discussed earlier by
Abramowicz and Miller) and determine the radius at which the ellipticity is
maximum.Comment: 6 pages, LateX macro
The slimming effect of advection on black-hole accretion flows
At super-Eddington rates accretion flows onto black holes have been described
as slim (aspect ratio ) or thick (H/R >1) discs, also known as
tori or (Polish) doughnuts. The relation between the two descriptions has never
been established, but it was commonly believed that at sufficiently high
accretion rates slim discs inflate, becoming thick. We wish to establish under
what conditions slim accretion flows become thick. We use analytical equations,
numerical 1+1 schemes, and numerical radiative MHD codes to describe and
compare various accretion flow models at very high accretion rates.We find that
the dominant effect of advection at high accretion rates precludes slim discs
becoming thick. At super-Eddington rates accretion flows around black holes can
always be considered slim rather than thick.Comment: 8 pages, 5 figures. Astronomy & Astrophysics, in pres
Holonomy invariance, orbital resonances, and kilohertz QPOs
Quantized orbital structures are typical for many aspects of classical
gravity (Newton's as well as Einstein's). The astronomical phenomenon of
orbital resonances is a well-known example. Recently, Rothman, Ellis and
Murugan (2001) discussed quantized orbital structures in the novel context of a
holonomy invariance of parallel transport in Schwarzschild geometry. We present
here yet another example of quantization of orbits, reflecting both orbital
resonances and holonomy invariance. This strong-gravity effect may already have
been directly observed as the puzzling kilohertz quasi-periodic oscillations
(QPOs) in the X-ray emission from a few accreting galactic black holes and
several neutron stars
- …
