The notion of optical geometry, introduced more than twenty years ago as a
formal tool in quantum field theory on a static background, has recently found
several applications to the study of physical processes around compact objects.
In this paper we define optical geometry for spherically symmetric
gravitational collapse, with the purpose of extending the current formalism to
physically interesting spacetimes which are not conformally static. The
treatment is fully general but, as an example, we also discuss the special case
of the Oppenheimer-Snyder model. The analysis of the late time behaviour shows
a close correspondence between the structure of optical spacetime for
gravitational collapse and that of flat spacetime with an accelerating
boundary. Thus, optical geometry provides a natural physical interpretation for
derivations of the Hawking effect based on the ``moving mirror analogy.''
Finally, we briefly discuss the issue of back-reaction in black hole
evaporation and the information paradox from the perspective of optical
geometry.Comment: 13 pages, 10 figures, aps, revtex, To be published in PR