134 research outputs found

    Climate variability of Southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)

    Get PDF
    A key region to study high resolution climate changes of the Southern Hemisphere is undoubtedly the southern part of Chile because it has the advantage to be far removed from the Northern Hemisphere ice sheets and thermohaline circulation influences. In order to reconstruct the regional climate evolution since the Last Glacial Maximum, we investigated the sedimentary infilling of Lago Puyehue (40°S, 164 km2, elevation 185 m) by a multi-proxy analyse of a 11 m long core. Sediments from this core are transported by interflow currents and are made of finely laminated silts, with only small disturbances due to volcanic and seismic activities. Several proxies were measured: grain-size, mineralogy, magnetic susceptibility, major elements geochemistry and biogenic silica concentration. These are used to reconstruct paleo-precipitation and paleo-productivity changes around 40°S. Results evidence that sediment grainsize is highly correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is highly correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition demonstrate that, since the Last Glacial Maximum, the Chilean Lake District was characterized by 3 abrupt climate changes superimposed on a long term climate evolution. These rapid climate changes are: (1) the end of the Last Glacial Maximum at 17,300 cal. yr. BP; (2) a 13,100-12,300 cal. yr. BP cold event, ending rapidly and interpreted as the local counter part of the European Younger Dryas event, and (3) a 3400-2900 cal. yr. BP climatic instability related to low solar activity. The timing of the 13,100-12,300 cold event is compared with similar records in both hemispheres and demonstrates that this Southern Hemisphere climate change lags behind the Northern Hemisphere Younger Dryas cold period by 500 to 1000 years

    Paleoproductivity of Puyehue Lake (Southern Chile) during the last millenium: climatic significance

    Get PDF
    Southern Chile is a key site for the understanding of past climatic variations since it is influenced by the El Nino Southern Oscillation (ENSO). We investigated high resolution climate changes during the last millennium by a multi-proxy analyse of short cores (60 cm long) collected in Puyehue lake (40°S): magnetic susceptibility, grain-size, mineralogy, density, gamma-density, LOI, biogenic silica content and bulk XRF geochemistry. According to age-depth model (210Pb, 137Cs and varve counting - Boës et al., this session), the cores cover the last 600 yr. The sediment is characterized by volcanic minerals and a high diatom content, due to the important lacustrine silica supply characteristic of volcanic environments. Moreover, the active volcanism of the Chilean Lake District is responsible of a high number of tephra deposits. Our main aim is to quantify biogenic particles fluxes throughout the last millennium by Na2CO3 dissolution and by normative calculation based on bulk XRF analyses. The result shows that volcanic eruptions do not influence the biogenic productivity of the lake. From 1400 to 1880 yr. AD, paleoproductivity shows a global trend from low to high biogenic production. Important paleoproductivity changes are observed over the last 120 yr. Results are compared with historical data and discussed in terms of climate changes and/or anthropic influence

    Numerical continuation in nonlinear experiments using local Gaussian process regression

    Get PDF
    Control-based continuation (CBC) is a general and systematic method to probe the dynamics of nonlinear experiments. In this paper, CBC is combined with a novel continuation algorithm that is robust to experimental noise and enables the tracking of geometric features of the response surface such as folds. The method uses Gaussian process regression to create a local model of the response surface on which standard numerical continuation algorithms can be applied. The local model evolves as continuation explores the experimental parameter space, exploiting previously captured data to actively select the next data points to collect such that they maximise the potential information gain about the feature of interest. The method is demonstrated experimentally on a nonlinear structure featuring harmonically coupled modes. Fold points present in the response surface of the system are followed and reveal the presence of an isola, i.e. a branch of periodic responses detached from the main resonance peak

    TMTDyn: A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the evergrowing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed

    Magnetic chemically peculiar stars

    Full text link
    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.Comment: 9 pages, 4 figures, 2 tables, chapter in "Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars", Springer (2014), eds. E. Niemczura, B. Smalley, W. Pyc

    TMTDyn: A Matlab package for modeling and control of hybrid rigid-continuum robots based on discretized lumped systems and reduced-order models

    Get PDF
    A reliable, accurate, and yet simple dynamic model is important to analyzing, designing, and controlling hybrid rigid–continuum robots. Such models should be fast, as simple as possible, and user-friendly to be widely accepted by the ever-growing robotics research community. In this study, we introduce two new modeling methods for continuum manipulators: a general reduced-order model (ROM) and a discretized model with absolute states and Euler–Bernoulli beam segments (EBA). In addition, a new formulation is presented for a recently introduced discretized model based on Euler–Bernoulli beam segments and relative states (EBR). We implement these models in a Matlab software package, named TMTDyn, to develop a modeling tool for hybrid rigid–continuum systems. The package features a new high-level language (HLL) text-based interface, a CAD-file import module, automatic formation of the system equation of motion (EOM) for different modeling and control tasks, implementing Matlab C-mex functionality for improved performance, and modules for static and linear modal analysis of a hybrid system. The underlying theory and software package are validated for modeling experimental results for (i) dynamics of a continuum appendage, and (ii) general deformation of a fabric sleeve worn by a rigid link pendulum. A comparison shows higher simulation accuracy (8–14% normalized error) and numerical robustness of the ROM model for a system with a small number of states, and computational efficiency of the EBA model with near real-time performances that makes it suitable for large systems. The challenges and necessary modules to further automate the design and analysis of hybrid systems with a large number of states are briefly discussed

    Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    Full text link
    There is no straightforward explanation for intrinsic X-ray emission from intermediate-mass main-sequence stars. Therefore the observed emission is often interpreted in terms of (hypothesized) late-type magnetically active companion stars. We use Chandra imaging observations to spatially resolve in X-rays a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, can not be discarded. The appropriate scenario in this vein is might be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not detected in X-rays, and therefore does not support this picture.Comment: 12 pages; accepted for publication in Astronomy & Astrophysic

    Seatbelt use and risk of major injuries sustained by vehicle occupants during motor-vehicle crashes: A systematic review and meta-analysis of cohort studies

    Get PDF
    BackgroundIn 2004, a World Health Report on road safety called for enforcement of measures such as seatbelt use, effective at minimizing morbidity and mortality caused by road traffic accidents. However, injuries caused by seatbelt use have also been described. Over a decade after publication of the World Health Report on road safety, this study sought to investigate the relationship between seatbelt use and major injuries in belted compared to unbelted passengers.MethodsCohort studies published in English language from 2005 to 2018 were retrieved from seven databases. Critical appraisal of studies was carried out using the Scottish Intercollegiate Guidelines Network (SIGN) checklist. Pooled risk of major injuries was assessed using the random effects meta-analytic model. Heterogeneity was quantified using I-squared and Tau-squared statistics. Funnel plots and Egger's test were used to investigate publication bias. This review is registered in PROSPERO (CRD42015020309).ResultsEleven studies, all carried out in developed countries were included. Overall, the risk of any major injury was significantly lower in belted passengers compared to unbelted passengers (RR 0.47; 95%CI, 0.29 to 0.80; I-2=99.7; P=0.000). When analysed by crash types, belt use significantly reduced the risk of any injury (RR 0.35; 95%CI, 0.24 to 0.52). Seatbelt use reduces the risk of facial injuries (RR=0.56, 95% CI=0.37 to 0.84), abdominal injuries (RR=0.87; 95% CI=0.78 to 0.98) and, spinal injuries (RR=0.56, 95% CI=0.37 to 0.84). However, we found no statistically significant difference in risk of head injuries (RR=0.49; 95% CI=0.22 to 1.08), neck injuries (RR=0.69: 95%CI 0.07 to 6.44), thoracic injuries (RR 0.96, 95%CI, 0.74 to 1.24), upper limb injuries (RR=1.05, 95%CI 0.83 to 1.34) and lower limb injuries (RR=0.77, 95%CI 0.58 to 1.04) between belted and non-belted passengers.ConclusionIn sum, the risk of most major road traffic injuries is lower in seatbelt users. Findings were inconclusive regarding seatbelt use and susceptibility to thoracic, head and neck injuries during road traffic accidents. Awareness should be raised about the dangers of inadequate seatbelt use. Future research should aim to assess the effects of seatbelt use on major injuries by crash type

    X-ray emission from early-type stars in the Orion Nebula Cluster

    Get PDF
    The X-ray properties of twenty ~1 Myr old O, B, and A stars of the Orion Trapezium are examined with data from the Chandra Orion Ultradeep Project (COUP). On the basis of simple theories for X-ray emission, we define two classes separated at spectral type B4: hotter stars have strong winds that may give rise to X-ray emission in small- or large-scale wind shocks, and cooler stars that should be X-ray dark due to their weaker winds and absence of outer convection zones where dynamos can generate magnetic fields. Only two of the massive stars show exclusively the constant soft-spectrum emission expected from the standard model for X-ray emission from hot stars involving many small shocks in an unmagnetized radiatively accelerated wind. Most of the other massive O7-B3 stars exhibit some combination of soft-spectrum wind emission, hard-spectrum flaring, and/or rotational modulation indicating large-scale inhomogeneity, suggesting magnetic confinement of winds with large-scale shocks. Most of the stars in the weak-wind class exhibit X-ray flares and have luminosities that are consistent with magnetic activity from known or unseen low-mass companions. All non-detections belong to the weak-wind class.Comment: accepted to ApJ Suppl., COUP Special Issu
    • 

    corecore