8 research outputs found

    Search for central exclusive production of top quark pairs in proton-proton collisions at sqrt{s} = 13 TeV with tagged protons

    No full text

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    Get PDF
    The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb-1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s s \sqrt{s} = 13 TeV

    Get PDF
    Abstract A search is performed for exclusive high-mass γγ → WW and γγ → ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 100 fb −1. No excess above the standard model background prediction is observed, and upper limits are set on the pp → pWWp and pp → pZZp cross sections in a fiducial region defined by the diboson invariant mass m(VV) > 1 TeV (with V = W, Z) and proton fractional momentum loss 0.04 < ξ < 0.20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at sqrt(s)=13 TeV

    No full text
    A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at Formula Presented in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of Formula Presented collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (Formula Presented), back-to-back in azimuth, and with a large diphoton invariant mass (Formula Presented) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters Formula Presented and Formula Presented, using an effective field theory. Additionally, upper limits are placed on the production of axionlike particles with coupling strength to photons Formula Presented that varies from Formula Presented to Formula Presented over the mass range from 500 to 2000 GeV

    Extracting the speed of sound in quark–gluon plasma with ultrarelativistic lead–lead collisions at the LHC

    No full text
    Ultrarelativistic nuclear collisions create a strongly interacting state of hot and dense quark-gluon matter that exhibits a remarkable collective flow behavior with minimal viscous dissipation. To gain deeper insights into its intrinsic nature and fundamental degrees of freedom, we determine the speed of sound in an extended volume of quark-gluon plasma using lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair of 5.02 TeV. The data were recorded by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 0.607 nb-1. The measurement is performed by studying the multiplicity dependence of the average transverse momentum of charged particles emitted in head-on PbPb collisions. Our findings reveal that the speed of sound in this matter is nearly half the speed of light, with a squared value of0.241±0.002(stat)±0.016(syst)in natural units. The effective medium temperature, estimated using the mean transverse momentum, is219±8(syst)MeV. The measured squared speed of sound at this temperature aligns precisely with predictions from lattice quantum chromodynamic (QCD) calculations. This result provides a stringent constraint on the equation of state of the created medium and direct evidence for a deconfined QCD phase being attained in relativistic nuclear collisions

    Test of lepton flavor universality in B ± → K ± μ + μ − and B ± → K ± e + e − decays in proton-proton collisions at s = 13 TeV

    No full text
    A test of lepton flavor universality inB±→K±μ+μ-andB±→K±e+e-decays, as well as a measurement of differential and integrated branching fractions of a nonresonantB±→K±μ+μ-decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions ats=13TeVrecorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractionsB(B±→K±μ+μ-)toB(B±→K±e+e-)is determined from the measured double ratioR(K)of these decays to the respective branching fractions of theB±→J/ψK±withJ/ψ→μ+μ-ande+e-decays, which allow for significant cancellation of systematic uncertainties. The ratioR(K)is measured in the range1.1&lt;6.0GeV2, whereqis the invariant mass of the lepton pair, and is found to beR(K)=0.78-0.23+0.47, in agreement with the standard model expectationR(K)≈1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range,B(B±→K±μ+μ-)=(12.42±0.68)×10-8, is consistent with the present world-average value and has a comparable precision

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at sqrt(s)=13 TeV

    No full text

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    No full text
    corecore