201 research outputs found

    Evaluation of MetriGenix custom 4D™ arrays applied for detection of breast cancer subtypes

    Get PDF
    BACKGROUND: Previously, a total of five breast cancer subtypes have been identified based on variation in gene expression patterns. These expression profiles were also shown to be associated with different prognostic value. In this study tumour samples from 27 breast cancer patients, previously subtyped by expression analysis using DNA microarrays, and four controls from normal breast tissue were included. A new MetriGenix 4D™ array proposed for diagnostic use was evaluated. METHODS: We applied MetriGenix custom 4D™ arrays for the detection of previously defined molecular subtypes of breast cancer. MetriGenix 4D™ arrays have special features including probe immobilization in microchannels with chemiluminescence detection that enable shorter hybridization time. RESULTS: The MetriGenix 4D™ array platform was evaluated with respect to both the accuracy in classifying the samples as well as the performance of the system itself. In a cross validation analysis using "Nearest Shrunken Centroid classifier" and the PAM software, 77% of the samples were classified correctly according to earlier classification results. CONCLUSION: The system shows potential for fast screening; however, improvements are needed

    International Agency for Research on Cancer Workshop on 'Expression array analyses in breast cancer taxonomy'

    Get PDF
    In May 2006, a workshop on Expression array analyses in breast cancer taxonomy was held at the International Agency for Research on Cancer (IARC). The workshop covered an array of topics from the validity of the currently defined breast tumor subtypes and other expression profile-based signatures to the technical limitations of expression analysis and the types of platforms on which these omics results will eventually reach clinical practice. Overall, the workshop participants believed firmly that tumor taxonomy is likely to yield improved prognostic and predictive markers. Even so, further standardization and validation are required before clinical trials are set in motion

    A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling

    Get PDF
    This study examined the pathological complete response (pCR) rate and safety of sequential gemcitabine-based combinations in breast cancer. We also examined gene expression profiles from tumour biopsies to identify biomarkers predictive of response. Indian women with large or locally advanced breast cancer received 4 cycles of gemcitabine 1200 mg m−2 plus doxorubicin 60 mg m−2 (Gem+Dox), then 4 cycles of gemcitabine 1000 mg m−2 plus cisplatin 70 mg m−2 (Gem+Cis), and surgery. Three alternate dosing sequences were used during cycle 1 to examine dynamic changes in molecular profiles. Of 65 women treated, 13 (24.5% of 53 patients with surgery) had a pCR and 22 (33.8%) had a complete clinical response. Patients administered Gem d1, 8 and Dox d2 in cycle 1 (20 of 65) reported more toxicities, with G3/4 neutropenic infection/febrile neutropenia (7 of 20) as the most common cycle-1 event. Four drug-related deaths occurred. In 46 of 65 patients, 10-fold cross validated supervised analyses identified gene expression patterns that predicted with ⩾73% accuracy (1) clinical complete response after eight cycles, (2) overall clinical complete response, and (3) pCR. This regimen shows strong activity. Patients receiving Gem d1, 8 and Dox d2 experienced unacceptable toxicity, whereas patients on other sequences had manageable safety profiles. Gene expression patterns may predict benefit from gemcitabine-containing neoadjuvant therapy

    Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated <it>BRCA1 </it>gene and in the control group.</p> <p>Methods</p> <p>The study group consisted of 48 women with <it>BRCA1 </it>gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99.</p> <p>Results</p> <p>The results of our investigation showed that <it>BRCA1 </it>mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of <it>BRCA1</it>-related cancers were ERα-positive compared with 57.5% in the control group (<it>P </it>< 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of <it>BRCA1</it>-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ.</p> <p>Conclusion</p> <p>In the case of <it>BRCA1</it>-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in <it>BRCA1 </it>mutation carriers.</p

    Non-Parametric Change-Point Method for Differential Gene Expression Detection

    Get PDF
    We proposed a non-parametric method, named Non-Parametric Change Point Statistic (NPCPS for short), by using a single equation for detecting differential gene expression (DGE) in microarray data. NPCPS is based on the change point theory to provide effective DGE detecting ability.NPCPS used the data distribution of the normal samples as input, and detects DGE in the cancer samples by locating the change point of gene expression profile. An estimate of the change point position generated by NPCPS enables the identification of the samples containing DGE. Monte Carlo simulation and ROC study were applied to examine the detecting accuracy of NPCPS, and the experiment on real microarray data of breast cancer was carried out to compare NPCPS with other methods.Simulation study indicated that NPCPS was more effective for detecting DGE in cancer subset compared with five parametric methods and one non-parametric method. When there were more than 8 cancer samples containing DGE, the type I error of NPCPS was below 0.01. Experiment results showed both good accuracy and reliability of NPCPS. Out of the 30 top genes ranked by using NPCPS, 16 genes were reported as relevant to cancer. Correlations between the detecting result of NPCPS and the compared methods were less than 0.05, while between the other methods the values were from 0.20 to 0.84. This indicates that NPCPS is working on different features and thus provides DGE identification from a distinct perspective comparing with the other mean or median based methods

    Gene expression analyses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study

    Get PDF
    Introduction The introduction of high-throughput technologies, also called -omics technologies, into epidemiology has raised the need for high-quality observational studies to reduce several sources of error and bias. Methods The Norwegian Women and Cancer (NOWAC) postgenome cohort study consists of approximately 50,000 women born between 1943 and 1957 who gave blood samples between 2003 and 2006 and filled out a two-page questionnaire. Blood was collected in such a way that RNA is preserved and can be used for gene expression analyses. The women are part of the NOWAC study consisting of 172,471 women 30 to 70 years of age at recruitment from 1991 to 2006 who answered one to three questionnaires on diet, medication use, and lifestyle. In collaboration with the Norwegian Breast Cancer Group, every NOWAC participant born between 1943 and 1957 who is admitted to a collaborating hospital for a diagnostic biopsy or for surgery of breast cancer will be asked to donate a tumor biopsy and two blood samples. In parallel, at least three controls are approached for each breast cancer case in order to obtain blood samples from at least two controls per case. The controls are drawn at random from NOWAC matched by time of follow-up and age. In addition, 400 normal breast tissues as well as blood samples will be collected among healthy women participating at the Norwegian Mammography Screening program at the Breast Imaging Center at the University Hospital of North-Norway, Tromsø. Results The NOWAC postgenome cohort offers a unique opportunity (a) to study blood-derived gene expression profiles as a diagnostic test for breast cancer in a nested case-control design with adjustment for confounding factors related to different exposures, (b) to improve the reliability and accuracy of this approach by adjusting for an individual's genotype (for example, variants in genes coding for hormone and drug-metabolizing and detoxifying enzymes), (c) to study gene expression profiles from peripheral blood as surrogate tissue to biomonitor defined exposure (for example, hormone) and its association with disease risk (that is, breast cancer), and (d) to study gene variants (single nucleotide polymorphisms and copy number variations) and environmental exposure (endogenous and exogenous hormones) and their influence on the incidence of different molecular subtypes of breast cancer. Conclusion The NOWAC postgenome cohort combining a valid epidemiological approach with richness of biological samples should make an important contribution to the study of the etiology and system biology of breast cancer

    A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study

    Get PDF
    Introduction: Estrogen receptor-alpha (ER-alpha) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-beta) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-beta distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods: We conducted an observational prospective study using immunohistochemistry to evaluate ER-beta expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-beta on disease-free survival in the 728 patients with complete follow-up data. Results: ER-beta evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-beta and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-beta positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-alpha/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-beta as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion: Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-beta positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations are necessary to better assess the role of the different ER-beta isoforms

    The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer

    Get PDF
    INTRODUCTION. HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. METHODS. We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis. RESULTS. HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. CONCLUSIONS. HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.National Institutes of Health, National Cancer Institute (R01 CA116481, P50 CA 5820, P30 CA 82103, U54 CA 112970); Office of Science; U.S. Department of Energy Office of Science, Office of Biological & Environmental Research (DE-AC02-05CH11231

    FISim: A new similarity measure between transcription factor binding sites based on the fuzzy integral

    Get PDF
    Background Regulatory motifs describe sets of related transcription factor binding sites (TFBSs) and can be represented as position frequency matrices (PFMs). De novo identification of TFBSs is a crucial problem in computational biology which includes the issue of comparing putative motifs with one another and with motifs that are already known. The relative importance of each nucleotide within a given position in the PFMs should be considered in order to compute PFM similarities. Furthermore, biological data are inherently noisy and imprecise. Fuzzy set theory is particularly suitable for modeling imprecise data, whereas fuzzy integrals are highly appropriate for representing the interaction among different information sources.Results We propose FISim, a new similarity measure between PFMs, based on the fuzzy integral of the distance of the nucleotides with respect to the information content of the positions. Unlike existing methods, FISim is designed to consider the higher contribution of better conserved positions to the binding affinity. FISim provides excellent results when dealing with sets of randomly generated motifs, and outperforms the remaining methods when handling real datasets of related motifs. Furthermore, we propose a new cluster methodology based on kernel theory together with FISim to obtain groups of related motifs potentially bound by the same TFs, providing more robust results than existing approaches.Conclusion FISim corrects a design flaw of the most popular methods, whose measures favour similarity of low information content positions. We use our measure to successfully identify motifs that describe binding sites for the same TF and to solve real-life problems. In this study the reliability of fuzzy technology for motif comparison tasks is proven.This work has been carried out as part of projects P08-TIC-4299 of J. A., Sevilla and TIN2006-13177 of DGICT, Madrid
    corecore