16 research outputs found

    Climate Scenarios for Switzerland CH2018 – Approach and Implications

    Get PDF
    To make sound decisions in the face of climate change, government agencies, policymakers and private stakeholders require suitable climate information on local to regional scales. In Switzerland, the development of climate change scenarios is strongly linked to the climate adaptation strategy of the Confederation. The current climate scenarios for Switzerland CH2018 - released in form of six user-oriented products - were the result of an intensive collaboration between academia and administration under the umbrella of the National Centre for Climate Services (NCCS), accounting for user needs and stakeholder dialogues from the beginning. A rigorous scientific concept ensured consistency throughout the various analysis steps of the EURO-CORDEX projections and a common procedure on how to extract robust results and deal with associated uncertainties. The main results show that Switzerland’s climate will face dry summers, heavy precipitation, more hot days and snow-scarce winters. Approximately half of these changes could be alleviated by mid-century through strong global mitigation efforts. A comprehensive communication concept ensured that the results were rolled out and distilled in specific user-oriented communication measures to increase their uptake and to make them actionable. A narrative approach with four fictitious persons was used to communicate the key messages to the general public. Three years after the release, the climate scenarios have proven to be an indispensable information basis for users in climate adaptation and for downstream applications. Potential for extensions and updates has been identified since then and will shape the concept and planning of the next scenario generation in Switzerland

    European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    No full text
    International audienceWe investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to attenuation or amplification of the climate change signal in the underlying GCMs. We find that the RCMs tend to produce less warming and more precipitation (or less drying) in many areas in both winter and summer

    Bias patterns and climate change signals in GCM-RCM model chains

    No full text
    The assessment of regional climate change and the associated planning of adaptation and response strategies are often based on complex model chains. Typically these employ global and regional climate models (GCMs and RCMs), as well as one or several impact models. It is a common belief that the errors in such model chains behave approximately additive, thus the uncertainty should increase with each modeling step. If this hypothesis was true, the application of RCMs would not lead to any intrinsic improvement (beyond higher-resolution details) of the GCM results. Here, we investigate the bias patterns (offset during the historical period against observations) and climate change signals of two RCMs that have downscaled a comprehensive set of GCMs following the EURO-CORDEX framework. Our results show that the biases of the RCMs and GCMs are not additive and not independent. The two RCMs are systematically reducing the biases and modifying climate change signals of the driving GCMs, even on scales that are considered well resolved by the driving GCMs. The GCM projected summer warming at the end of the century is substantially reduced by both RCMs. These results are important, as the projected summer warming and its likely impact on the water cycle are among the most serious concerns regarding European climate change.ISSN:1748-9326ISSN:1748-931

    Temperature-Dependent Transport Properties of a Redox-Active Ionic Liquid with a Viologen Group

    No full text
    A redox-active ionic liquid (IL), 1-butyl-1â€Č-heptyl-4,4â€Č-bipyridinium bis­(trifluoromethanesulfonyl)­imide, has been synthesized and its transport processes were investigated. The conductivity and viscosity of the IL, as well as the diffusion coefficients of its components were studied over a 50 °C wide temperature range: for the diffusivity studies, both the pulsed-gradient spin–echo (PGSE)–NMR technique and voltammetric measurements have been applied. The measured data are presented in the paper and are compared to each other. It was found that the diffusion coefficients determined by means of NMR and chronoamperometry measurements are, within the range of experimental error, equaland they are (in accordance with other ionic liquid studies) higher than what the conductivity or viscosity measurements indicate. The results are interpreted in the light of the existing theories. The measured diffusion coefficients and bulk conductivities can be well interrelated based on the “ionicity” concept (that is, by treating the ionic liquid as a weak electrolyte). In agreement with the empirical Walden rule, a direct comparison between the measured conductivities and viscosities is also possible, for which a hole conduction model is utilized. Based on the fact that both the electrochemical and the NMR measurements yield practically the same diffusion coefficients in the system, there is no evidence that interpretations based in other redox-active IL systems on “homogeneous electron transfer” apply to the system studied here
    corecore