685 research outputs found

    Obstetric and perinatal risks after the use of donor sperm : A systematic review and meta-analysis

    Get PDF
    Donor sperm is widely used in infertility treatments. The purpose of the study was to investigate, whether use of donor sperm in intrauterine insemination (IUI) or in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatments affect maternal and perinatal risks compared with spontaneously conceived pregnancies or use of partner sperm in IUI, IVF or ICSI. We provide a systematic review and meta-analyses on the most clinically relevant obstetric and perinatal outcomes after use of donor sperm compared with partner sperm: hypertensive disorders of pregnancy, preeclampsia, low birth weight, and preterm birth. Our meta-analyses showed an increased risk for preeclampsia (pooled adjusted odds ratio (aOR) 1.77, 95% CI 1.26-2.48) and hypertensive disorders of pregnancy (pooled aOR 1.55, 95%, CI 1.20-2.00) in pregnancies resulting from IUI with donor sperm compared with IUI with partner sperm. No increased risk was seen for low birth weight or preterm birth after the use of donor sperm in IUI compared with the use of partner sperm in IUI. Subgroup analysis for singletons only did not change these results. The meta-analysis on low birth weight showed a lower risk after in IVF with donor sperm compared with IVF with partner sperm (pooled aOR 0.89, 95% CI 0.83-0.94). For hypertensive disorders of pregnancy, preeclampsia and preterm birth, no difference was found between IVF with donor sperm vs. partner sperm. Patients need to be informed about the moderately increased risk of hypertensive disorders of pregnancy and preeclampsia in pregnancies after IUI with donor sperm.Peer reviewe

    Identification and rejection of scattered neutrons in AGATA

    Full text link
    Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were measured in an AGATA experiment performed at INFN Laboratori Nazionali di Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors (12 36-fold segmented high-purity germanium crystals), placed at a distance of 50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment was to study the interaction of neutrons in the segmented high-purity germanium detectors of AGATA and to investigate the possibility to discriminate neutrons and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were used for a time-of-flight measurement, which gave an independent discrimination of neutrons and gamma rays and which was used to optimise the gamma-ray tracking-based neutron rejection methods. It was found that standard gamma-ray tracking, without any additional neutron rejection features, eliminates effectively most of the interaction points due to recoiling Ge nuclei after elastic scattering of neutrons. Standard tracking rejects also a significant amount of the events due to inelastic scattering of neutrons in the germanium crystals. Further enhancements of the neutron rejection was obtained by setting conditions on the following quantities, which were evaluated for each event by the tracking algorithm: energy of the first and second interaction point, difference in the calculated incoming direction of the gamma ray, figure-of-merit value. The experimental results of tracking with neutron rejection agree rather well with Geant4 simulations

    Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism

    Full text link
    FtsZ, a highly conserved bacterial tubulin GTPase homolog, is a central component of the cell division machinery in nearly all walled bacteria. FtsZ polymerizes at the future division site and recruits greater than 30 proteins to assemble into a macromolecular complex termed the divisome. Many of these divisome proteins are involved in septal cell wall peptidoglycan (sPG) synthesis. Recent studies found that FtsZ polymers undergo GTP hydrolysis-coupled treadmilling dynamics along the circumference the division site, driving the processive movement of sPG synthesis enzymes. How FtsZ’s treadmilling drives the directional transport of sPG enzymes and what its precise role is in bacterial cell division are unknown. Combining theoretical modeling and experimental testing, we show that FtsZ’s treadmilling drives the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism, where the shrinking end of FtsZ polymers introduces an asymmetry to rectify diffusions of single sPG enzymes into persistent end-tracking movement. Furthermore, we show that the processivity of this directional movement is dependent on the binding potential between FtsZ and the enzyme, and hinges on the balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. This interplay could provide a mechanism to control the level of available enzymes for active sPG synthesis both in time and space, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacterial species

    Interferometry of Direct Photons in Central 280Pb+208Pb Collisions at 158A GeV

    Full text link
    Two-particle correlations of direct photons were measured in central 208Pb+208Pb collisions at 158 AGeV. The invariant interferometric radii were extracted for 100<K_T<300 MeV/c and compared to radii extracted from charged pion correlations. The yield of soft direct photons, K_T<300 MeV/c, was extracted from the correlation strength and compared to theoretical calculations.Comment: 5 pages, 4 figure

    Scaling of Particle and Transverse Energy Production in 208Pb+208Pb collisions at 158 A GeV

    Full text link
    Transverse energy, charged particle pseudorapidity distributions and photon transverse momentum spectra have been studied as a function of the number of participants (N_{part}) and the number of binary nucleon-nucleon collisions (N_{coll}) in 158 A GeV Pb+Pb collisions over a wide impact parameter range. A scaling of the transverse energy pseudorapidity density at midrapidity as N_{part}^{1.08 \pm 0.06} and N_{coll}^{0.83 \pm 0.05} is observed. For the charged particle pseudorapidity density at midrapidity we find a scaling as N_{part}^{1.07 \pm 0.04} and N_{coll}^{0.82 \pm 0.03}. This faster than linear scaling with N_{part} indicates a violation of the naive Wounded Nucleon Model.Comment: 13 pages, 16 figures, submitted to European Physical Journal C (revised results for scaling exponents

    Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions

    Get PDF
    Event-by-event fluctuations in the multiplicities of charged particles and photons, and the total transverse energy in 158A\cdot A GeV Pb+Pb collisions are studied for a wide range of centralities. For narrow centrality bins the multiplicity and transverse energy distributions are found to be near perfect Gaussians. The effect of detector acceptance on the multiplicity fluctuations has been studied and demonstrated to follow statistical considerations. The centrality dependence of the charged particle multiplicity fluctuations in the measured data has been found to agree reasonably well with those obtained from a participant model. However for photons the multiplicity fluctuations has been found to be lower compared to those obtained from a participant model. The multiplicity and transverse energy fluctuations have also been compared to those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on errors and few figures modifie

    Multiplicity Distributions and Charged-neutral Fluctuations

    Get PDF
    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158A\cdot A GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as Npart1.07±0.05N_{part}^{1.07\pm 0.05} and photons as Npart1.12±0.03N_{part}^{1.12\pm 0.03} have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics (ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in Pramana, Journal of Physic

    Search for DCC in 158A GeV Pb+Pb Collisions

    Full text link
    A detailed analysis of the phase space distributions of charged particles and photons have been carried out using two independent methods. The results indicate the presence of nonstatistical fluctuations in localized regions of phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
    corecore